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Strong approximations in the iid setting

Let (Xi )i≥1 be a sequence of real-valued r.v.’s centered and with
second moment σ2 finite. Let Sn = X1 + X2 + · · ·+ Xn

The almost sure invariance principle (ASIP) states that one can
redefine (Sn)n≥1 without changing its distribution on a (richer)
probability space on which there exists a sequence (Zi )i≥1 of iid
centered Gaussian variables with variance σ2 such that

max
k≤n
|Sk − σBk | = o(bn) almost surely,

where bn = (n log log n)1/2 (Strassen (1964)) and Bk = ∑k
i=1 Zi .

When (Xi )i≥1 is assumed to be in addition in Lp with p > 2, then
we can obtain rates in the ASIP:

bn = n1/p

(see Major (1976) for p ∈]2, 3] and Komlós-Major-Tusnády (1975)
for p > 3).

These results are based on a recursive dyadic construction using the
conditional quantile method (this method is called the ”Hungarian
construction”).
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And what about if the r.v.’s do not have the same law ?

Sakhanenko (06’). Let (Xi )i≥1 be a sequence of independent r.v.’s
centered and in L2. Let r > 2. On a richer probability space, one
can construct a sequence (Zi )i≥1 of independent centered gaussian
r.v.’s with Var(Zn) = Var(Xn) and such that for all x > 0 and all
n ≥ 1,

P
(

max
1≤k≤n

∣∣Sk − Bk

∣∣ > c(r)x
)
≤

n

∑
i=1

E min
( |Xi |r

x r
,
|Xi |2
x2

)
.

Extensions in the multivariate setting were obtained by Einmahl
(’87,’89), Zaitsev (’98, ’07)

In the iid setting and in the one-dimensional case, the rate in the
ASIP is O(log n) as soon as the r.v.’s have a finite moment
generating function in a neighborhood of 0 (KMT, ’76). This rate is
unimprovable !

Florence Merlevède Université Paris-Est-Marne-La-Vallée (UPEM) joint work with C.Cuny, J.Dedecker and A. Korepanov



And what about if the r.v.’s do not have the same law ?

Sakhanenko (06’). Let (Xi )i≥1 be a sequence of independent r.v.’s
centered and in L2. Let r > 2. On a richer probability space, one
can construct a sequence (Zi )i≥1 of independent centered gaussian
r.v.’s with Var(Zn) = Var(Xn) and such that for all x > 0 and all
n ≥ 1,

P
(

max
1≤k≤n

∣∣Sk − Bk

∣∣ > c(r)x
)
≤

n

∑
i=1

E min
( |Xi |r

x r
,
|Xi |2
x2

)
.

Extensions in the multivariate setting were obtained by Einmahl
(’87,’89), Zaitsev (’98, ’07)

In the iid setting and in the one-dimensional case, the rate in the
ASIP is O(log n) as soon as the r.v.’s have a finite moment
generating function in a neighborhood of 0 (KMT, ’76). This rate is
unimprovable !
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Some extensions in the Dependent setting

In 2014, Berkes-Liu-Wu proved the ASIP with rate o(n1/p), p > 2,
when Xk = g(. . . , εk−1, εk ) with (εk )k∈Z are iid r.v.’ s,
‖X0‖p < ∞ and assuming some weak dependence conditions.

They assume an arithmetical decay of convergence of ‖Xk − X ∗k ‖p
where X ∗k = g(. . . , ε−1, ε∗0, ε1, . . . , εk )

In 2018, Cuny-Dedecker, M. used the idea developed in BLW to
obtain sharp conditions for the ASIP with rate o(n1/p) in case of
functions of random iterates. They considered models where
Xn = h(εn,Wn−1) with Wn = F (εn,Wn−1).

In 2015, M. and Rio obtained the ASIP with rate O(log n) for
additive bounded functional of an Harris recurrent geometrically
ergodic Markov chain.

For all these works, the fact that there is an underlying sequence of
iid r.v.’s and the representation by this sequence is known plays a
crucial role.
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Rates in the ASIP for some slowly dynamical systems

Our toy model: let us consider the LSV map (Liverani, Saussol et
Vaienti, 1999):

for 0 < γ < 1, f (x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[

2x − 1 if x ∈ [1/2, 1]

Graph of f
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There exists a unique absolutely continuous f -invariant probability
measure µ on [0, 1], which is equivalent to the Lebesgue measure
and whose density h satisfies 0 < c ≤ xγh(x) ≤ C < ∞.

The intermittent behaviour comes from the fact that 0 is a fixed
point with f ′(0) = 1.

Hence if a point x is close to 0, then its orbit (f n(x))n≥0 stays
around 0 for a long time.

The degree of intermittency is given by the parameter γ and is
quantified by choosing an interval away from 0 such as Y =]1/2, 1]
and considering the first return time τ : Y →N,

τ(x) = min{n ≥ 1 : f n(x) ∈ Y } .

We have C−1n−1/γ ≤ Leb (τ ≥ n) ≤ Cn−1/γ (Gouezel’04 or
Young’99)

For this model, the return time has a weak moment of order
β = 1/γ.

Florence Merlevède Université Paris-Est-Marne-La-Vallée (UPEM) joint work with C.Cuny, J.Dedecker and A. Korepanov



There exists a unique absolutely continuous f -invariant probability
measure µ on [0, 1], which is equivalent to the Lebesgue measure
and whose density h satisfies 0 < c ≤ xγh(x) ≤ C < ∞.

The intermittent behaviour comes from the fact that 0 is a fixed
point with f ′(0) = 1.

Hence if a point x is close to 0, then its orbit (f n(x))n≥0 stays
around 0 for a long time.

The degree of intermittency is given by the parameter γ and is
quantified by choosing an interval away from 0 such as Y =]1/2, 1]
and considering the first return time τ : Y →N,

τ(x) = min{n ≥ 1 : f n(x) ∈ Y } .

We have C−1n−1/γ ≤ Leb (τ ≥ n) ≤ Cn−1/γ (Gouezel’04 or
Young’99)

For this model, the return time has a weak moment of order
β = 1/γ.
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Suppose that ϕ : [0, 1]→ R is a Hölder continuous observable with∫
ϕ dµ = 0 and let

Sn(ϕ) =
n−1

∑
k=0

ϕ ◦ f k .

We consider Sn(ϕ) as a discrete time random process on the
probability space ([0, 1], µ). The increments (ϕ ◦ f n)n≥0 are
stationary (since µ is f -invariant) and their covariances decay
polynomially: ∣∣∣∫ ϕ ϕ ◦ f n dµ

∣∣∣ = O
(
n−(1−γ)/γ

)
.

If γ < 1/2, n−1/2Sn(ϕ)→d N(0, c2) with

c2 =
∫

ϕ2 dµ + 2
∞

∑
n=1

∫
ϕ ϕ ◦ f n dµ (∗)

What about rates in the ASIP when γ < 1/2 ?

Florence Merlevède Université Paris-Est-Marne-La-Vallée (UPEM) joint work with C.Cuny, J.Dedecker and A. Korepanov



Suppose that ϕ : [0, 1]→ R is a Hölder continuous observable with∫
ϕ dµ = 0 and let

Sn(ϕ) =
n−1

∑
k=0

ϕ ◦ f k .

We consider Sn(ϕ) as a discrete time random process on the
probability space ([0, 1], µ). The increments (ϕ ◦ f n)n≥0 are
stationary (since µ is f -invariant) and their covariances decay
polynomially: ∣∣∣∫ ϕ ϕ ◦ f n dµ

∣∣∣ = O
(
n−(1−γ)/γ

)
.

If γ < 1/2, n−1/2Sn(ϕ)→d N(0, c2) with

c2 =
∫

ϕ2 dµ + 2
∞

∑
n=1

∫
ϕ ϕ ◦ f n dµ (∗)

What about rates in the ASIP when γ < 1/2 ?
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Previous results for the LSV map

The first results were obtained by Melbourne and Nicol (2005) but
without explicit rates by using a coupling method due to Philipp
and Stout (1975).

Using an approximation via reverse martingale difference sequences
and an ASIP for reverse MDS due to Cuny-M. (’15),
Korepanov-Kosloff-Melbourne ’16 proved the ASIP with rates

Sn(ϕ)−Wn =

{
o(nγ+ε), γ ∈ [1/4, 1/2[

O(n1/4(log n)1/2(log log n)1/4), γ ∈]0, 1/4[

for all ε > 0 (No way to get better bounds with this method!)

For Hölder continuous or bounded variation observables, using a
conditional quantile method, M.-Rio ’12, proved the ASIP with rates

Sn(ϕ)−Wn = O(nγ′(log n)1/2(log log n)(1+ε)γ′)

for all ε > 0, where γ′ = max{γ, 1/3}.
Is it possible to get better rates than O(n1/4) ? For ϕ = Id and
f (x) = 2x mod1, one can have much better !
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Our results

Theorem (Cuny-Dedecker-Korepanov-M. (2019))

Let γ ∈ (0, 1/2) and ϕ : [0, 1]→ R be a Hölder continuous observable
with

∫
ϕ dµ = 0. For the LSV map, the random process Sn(ϕ) satisfies

the ASIP with variance c2 given by (*) and rate o(nγ(log n)γ+ε) for all
ε > 0.

If c2 = 0, the rate in the ASIP can be improved to O(1). Indeed,in this
case ϕ is a coboundary in the sense that ϕ = u − u ◦ f with u bounded.

However in general the rates are optimal in the following sense :

Proposition (C-D-K-M. (2019))

There exists a Hölder continuous observable ϕ with
∫

ϕ dµ = 0 such that

lim sup
n→∞

(n log n)−γ|Sn(ϕ)−Wn| > 0

for all Brownian motions (Wt)t≥0 defined on the same (possibly
enlarged) probability space as (Sn(ϕ))n≥0.
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Another toy model: The Holland map (’05)

For a γ ∈ (0, 1), let

f (x) =

{
x(1 + xγρ(x)), x ≤ 1/2

2x − 1, x > 1/2

where ρ(x) = C | log x |(1+ε)γ with ε > 0 and C = 2γ(log 2)−(1+ε)γ.

The first return time has a strong moment of order β = 1/γ:∫
Y τ1/γ dLeb < ∞.

In this situation we have

Theorem (Cuny-Dedecker-Korepanov-M. (2019))

Let γ ∈ (0, 1/2) and ϕ : [0, 1]→ R be a Hölder continuous observable
with

∫
ϕ dµ = 0. For the Holland map, the random process Sn(ϕ)

satisfies the ASIP with variance c2 given by (*) and rate o(nγ).

Intermittent maps are prototypical examples of nonuniformly
expanding dynamical systems. Similar results can be obtained in
this general setup (the rates depend on the weak or strong moments
of the return time).
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Main ideas of the proof

The main idea is to construct a stationary Markov chain
(gn, n ∈N) on a countable space S and an observable ψ : Ω→ R

(here Ω ⊂ SN) such that
∫

ψ dPΩ = 0 and setting

Xk = ψ(gk , gk+1, . . .) , k ≥ 0,

the process (Xk )k≥0 on the probability space (Ω, PΩ) is equal in
law to (ϕ ◦ f k )k≥0 on ([0, 1], µ).

Our Markov chain is in the spirit of the classical Young towers.

Recall that Y =]1/2, 1] and τ : Y →N be the inducing time
τ(x) = min{n ≥ 1 : f n(x) ∈ Y }. Let F : Y → Y be the induced

map: F (x) = f τ(x)(x). Let α be the partition of Y into the
intervals where τ is constant.

Let A denote the set of all finite words in the alphabet α, not
including the empty word. Denote by w = a0 · · · an−1 an element
of A. Let also h : A →N, h(w) = τ(a0) + · · ·+ τ(an−1)
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On the Markov chain

Let S = {(w , `) ∈ A×Z : 0 ≤ ` < h(w)}.

Let g0 ∈ S be distributed according to a certain ν and (εk ) be a
sequence of iid r.v. with values in A, distribution PA and
independent from g0.

Then, for any n ≥ 0, we define

gn+1 = U(gn, εn+1)

where

U((w , `), ε) =

{
(w , `+ 1), ` < h(w)− 1 ,

(ε, 0), ` = h(w)− 1 .

For the LSV and the Holland maps the constructed Markov chain is
aperiodic.
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We shall prove an ASIP for the partial sums associated with
(Xk )k≥0 where Xk = ψ(gk , gk+1, . . .).

The function ψ satisfies the following property: for
a = (g0, . . . , gN , gN+1, . . .) and b = (g0, . . . , gN , g ′N+1, . . .) with
gN+1 6= g ′N+1,

|ψ(a)− ψ(b)| ≤ Cθ∑N
k=0 1{gk∈S0} ,

where S0 = {(w , 0) : w ∈ A} and θ ∈]0, 1[.

With the help of the above property one can prove that there exists
a measurable function Gm such that, for any r ≥ 1,

‖Xk − Gm(εk−m, . . . , εk+m)‖1 � P(T ≥ m) +m−r/2

where T is the meeting time

T = inf{n ≥ 0 : gn = g∗n }

here g∗0 has distribution ν and is independent of (g0, (εk )k≥1) and
g∗n+1 = U(g∗n , εn+1).

Florence Merlevède Université Paris-Est-Marne-La-Vallée (UPEM) joint work with C.Cuny, J.Dedecker and A. Korepanov



We shall prove an ASIP for the partial sums associated with
(Xk )k≥0 where Xk = ψ(gk , gk+1, . . .).

The function ψ satisfies the following property: for
a = (g0, . . . , gN , gN+1, . . .) and b = (g0, . . . , gN , g ′N+1, . . .) with
gN+1 6= g ′N+1,

|ψ(a)− ψ(b)| ≤ Cθ∑N
k=0 1{gk∈S0} ,

where S0 = {(w , 0) : w ∈ A} and θ ∈]0, 1[.

With the help of the above property one can prove that there exists
a measurable function Gm such that, for any r ≥ 1,

‖Xk − Gm(εk−m, . . . , εk+m)‖1 � P(T ≥ m) +m−r/2

where T is the meeting time

T = inf{n ≥ 0 : gn = g∗n }

here g∗0 has distribution ν and is independent of (g0, (εk )k≥1) and
g∗n+1 = U(g∗n , εn+1).
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The moments of T can be handled with Lindvall’s results (’79) (see
also Prop 4.15 in Pitman ’74).

Note that before meeting the chains do not share the same
innovations and therefore are independent to each other.

Let β = 1/γ. If
∫

τβdLeb < ∞ then E(T β−1) < ∞

If Leb (τ ≥ n) ≤ Cn−β then E(hβ,η(T )) < ∞ for any η > 1 where

hβ,η(x) = xβ−1(log(1 + x))−η.

The 2m-dependent approximation

‖Xk − Gm(εk−m, . . . , εk+m)‖1 � P(T ≥ m) +m−r/2

allows to adapt the scheme of proof developped by Berkes-Liu-Wu
(’14) to prove KMT with rate o(n1/p) for functions of iid having a
moment of order p, under a weak dependence condition.

Their proof consists first of providing a conditional Gaussian
approximation by freezing some part of the (εk )k , making suitable
blocks and applying Sakhanenko’s ’06 result, and after of
proceeding to a unconditional Gaussian approximation.
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moment of order p, under a weak dependence condition.

Their proof consists first of providing a conditional Gaussian
approximation by freezing some part of the (εk )k , making suitable
blocks and applying Sakhanenko’s ’06 result, and after of
proceeding to a unconditional Gaussian approximation.
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Thank you for your attention!
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