Rates in almost sure invariance principle for slowly mixing dynamical systems

Florence Merlevède

Université Paris-Est-Marne-La-Vallée (UPEM)

joint work with C.Cuny, J.Dedecker and A. Korepanov

Long-Time Behaviour and Statistical Inference for Stochastic Processes: from Markovian to Long-Memory Dynamics. November 21 2019

• Let $(X_i)_{i\geq 1}$ be a sequence of real-valued r.v.'s centered and with second moment σ^2 finite. Let $S_n = X_1 + X_2 + \cdots + X_n$

- Let $(X_i)_{i\geq 1}$ be a sequence of real-valued r.v.'s centered and with second moment σ^2 finite. Let $S_n = X_1 + X_2 + \cdots + X_n$
- The almost sure invariance principle (ASIP) states that one can redefine $(S_n)_{n\geq 1}$ without changing its distribution on a (richer) probability space on which there exists a sequence $(Z_i)_{i\geq 1}$ of iid centered Gaussian variables with variance σ^2 such that

$$\max_{k \le n} |S_k - \sigma B_k| = o(b_n) \text{ almost surely,}$$

where
$$b_n = (n \log \log n)^{1/2}$$
 (Strassen (1964)) and $B_k = \sum_{i=1}^k Z_i$.

- Let $(X_i)_{i\geq 1}$ be a sequence of real-valued r.v.'s centered and with second moment σ^2 finite. Let $S_n = X_1 + X_2 + \cdots + X_n$
- The almost sure invariance principle (ASIP) states that one can redefine (S_n)_{n≥1} without changing its distribution on a (richer) probability space on which there exists a sequence (Z_i)_{i≥1} of iid centered Gaussian variables with variance σ² such that

$$\max_{k \le n} |S_k - \sigma B_k| = o(b_n) \text{ almost surely,}$$

where $b_n = (n \log \log n)^{1/2}$ (Strassen (1964)) and $B_k = \sum_{i=1}^k Z_i$.

 When (X_i)_{i≥1} is assumed to be in addition in L^p with p > 2, then we can obtain rates in the ASIP:

$$b_n = n^{1/p}$$

(see Major (1976) for $p \in]2, 3]$ and Komlós-Major-Tusnády (1975) for p > 3).

通 と く ヨ と く ヨ と

- Let $(X_i)_{i\geq 1}$ be a sequence of real-valued r.v.'s centered and with second moment σ^2 finite. Let $S_n = X_1 + X_2 + \cdots + X_n$
- The almost sure invariance principle (ASIP) states that one can redefine $(S_n)_{n\geq 1}$ without changing its distribution on a (richer) probability space on which there exists a sequence $(Z_i)_{i\geq 1}$ of iid centered Gaussian variables with variance σ^2 such that

$$\max_{k \le n} |S_k - \sigma B_k| = o(b_n) \text{ almost surely,}$$

where $b_n = (n \log \log n)^{1/2}$ (Strassen (1964)) and $B_k = \sum_{i=1}^k Z_i$.

 When (X_i)_{i≥1} is assumed to be in addition in L^p with p > 2, then we can obtain rates in the ASIP:

$$b_n = n^{1/p}$$

(see Major (1976) for $p \in]2, 3]$ and Komlós-Major-Tusnády (1975) for p > 3).

These results are based on a recursive dyadic construction using the conditional quantile method (this method is called the "Hungarian construction").

Florence Merlevède Université Paris-Est-Marne-La-Vallée (UPEN

And what about if the r.v.'s do not have the same law ?

• Sakhanenko (06'). Let $(X_i)_{i\geq 1}$ be a sequence of independent r.v.'s centered and in \mathbb{L}^2 . Let r > 2. On a richer probability space, one can construct a sequence $(Z_i)_{i\geq 1}$ of independent centered gaussian r.v.'s with $\operatorname{Var}(Z_n) = \operatorname{Var}(X_n)$ and such that for all x > 0 and all $n \geq 1$,

$$\mathbb{P}\left(\max_{1\leq k\leq n} \left|S_k - B_k\right| > c(r)x\right) \leq \sum_{i=1}^n \mathbb{E}\min\left(\frac{|X_i|^r}{x^r}, \frac{|X_i|^2}{x^2}\right).$$

And what about if the r.v.'s do not have the same law ?

• Sakhanenko (06'). Let $(X_i)_{i\geq 1}$ be a sequence of independent r.v.'s centered and in \mathbb{L}^2 . Let r > 2. On a richer probability space, one can construct a sequence $(Z_i)_{i\geq 1}$ of independent centered gaussian r.v.'s with $\operatorname{Var}(Z_n) = \operatorname{Var}(X_n)$ and such that for all x > 0 and all $n \geq 1$,

$$\mathbb{P}\left(\max_{1\leq k\leq n} \left|S_k - B_k\right| > c(r)x\right) \leq \sum_{i=1}^n \mathbb{E}\min\left(\frac{|X_i|^r}{x^r}, \frac{|X_i|^2}{x^2}\right).$$

• Extensions in the multivariate setting were obtained by Einmahl ('87,'89), Zaitsev ('98, '07)

And what about if the r.v.'s do not have the same law ?

• Sakhanenko (06'). Let $(X_i)_{i\geq 1}$ be a sequence of independent r.v.'s centered and in \mathbb{L}^2 . Let r > 2. On a richer probability space, one can construct a sequence $(Z_i)_{i\geq 1}$ of independent centered gaussian r.v.'s with $\operatorname{Var}(Z_n) = \operatorname{Var}(X_n)$ and such that for all x > 0 and all $n \geq 1$,

$$\mathbb{P}\left(\max_{1\leq k\leq n} \left|S_k - B_k\right| > c(r)x\right) \leq \sum_{i=1}^n \mathbb{E}\min\left(\frac{|X_i|^r}{x^r}, \frac{|X_i|^2}{x^2}\right).$$

- Extensions in the multivariate setting were obtained by Einmahl ('87,'89), Zaitsev ('98, '07)
- In the iid setting and in the one-dimensional case, the rate in the ASIP is $O(\log n)$ as soon as the r.v.'s have a finite moment generating function in a neighborhood of 0 (KMT, '76). This rate is unimprovable !

• In 2014, Berkes-Liu-Wu proved the ASIP with rate $o(n^{1/p})$, p > 2, when $X_k = g(\ldots, \varepsilon_{k-1}, \varepsilon_k)$ with $(\varepsilon_k)_{k \in \mathbb{Z}}$ are iid r.v.' s, $\|X_0\|_p < \infty$ and assuming some weak dependence conditions.

- In 2014, Berkes-Liu-Wu proved the ASIP with rate $o(n^{1/p})$, p > 2, when $X_k = g(\ldots, \varepsilon_{k-1}, \varepsilon_k)$ with $(\varepsilon_k)_{k \in \mathbb{Z}}$ are iid r.v.' s, $\|X_0\|_p < \infty$ and assuming some weak dependence conditions.
- They assume an arithmetical decay of convergence of $||X_k X_k^*||_p$ where $X_k^* = g(\dots, \varepsilon_{-1}, \varepsilon_0^*, \varepsilon_1, \dots, \varepsilon_k)$

- In 2014, Berkes-Liu-Wu proved the ASIP with rate $o(n^{1/p})$, p > 2, when $X_k = g(\ldots, \varepsilon_{k-1}, \varepsilon_k)$ with $(\varepsilon_k)_{k \in \mathbb{Z}}$ are iid r.v.' s, $\|X_0\|_p < \infty$ and assuming some weak dependence conditions.
- They assume an arithmetical decay of convergence of ||X_k − X^{*}_k||_p where X^{*}_k = g(..., ε₋₁, ε^{*}₀, ε₁,..., ε_k)
- In 2018, Cuny-Dedecker, M. used the idea developed in BLW to obtain sharp conditions for the ASIP with rate $o(n^{1/p})$ in case of functions of random iterates. They considered models where $X_n = h(\varepsilon_n, W_{n-1})$ with $W_n = F(\varepsilon_n, W_{n-1})$.

- In 2014, Berkes-Liu-Wu proved the ASIP with rate $o(n^{1/p})$, p > 2, when $X_k = g(\ldots, \varepsilon_{k-1}, \varepsilon_k)$ with $(\varepsilon_k)_{k \in \mathbb{Z}}$ are iid r.v.' s, $\|X_0\|_p < \infty$ and assuming some weak dependence conditions.
- They assume an arithmetical decay of convergence of ||X_k − X^{*}_k||_p where X^{*}_k = g(..., ε₋₁, ε^{*}₀, ε₁, ..., ε_k)
- In 2018, Cuny-Dedecker, M. used the idea developed in BLW to obtain sharp conditions for the ASIP with rate $o(n^{1/p})$ in case of functions of random iterates. They considered models where $X_n = h(\varepsilon_n, W_{n-1})$ with $W_n = F(\varepsilon_n, W_{n-1})$.
- In 2015, M. and Rio obtained the ASIP with rate $O(\log n)$ for additive bounded functional of an Harris recurrent geometrically ergodic Markov chain.

- In 2014, Berkes-Liu-Wu proved the ASIP with rate $o(n^{1/p})$, p > 2, when $X_k = g(\ldots, \varepsilon_{k-1}, \varepsilon_k)$ with $(\varepsilon_k)_{k \in \mathbb{Z}}$ are iid r.v.' s, $\|X_0\|_p < \infty$ and assuming some weak dependence conditions.
- They assume an arithmetical decay of convergence of ||X_k − X^{*}_k||_p where X^{*}_k = g(..., ε₋₁, ε^{*}₀, ε₁, ..., ε_k)
- In 2018, Cuny-Dedecker, M. used the idea developed in BLW to obtain sharp conditions for the ASIP with rate $o(n^{1/p})$ in case of functions of random iterates. They considered models where $X_n = h(\varepsilon_n, W_{n-1})$ with $W_n = F(\varepsilon_n, W_{n-1})$.
- In 2015, M. and Rio obtained the ASIP with rate $O(\log n)$ for additive bounded functional of an Harris recurrent geometrically ergodic Markov chain.
- For all these works, the fact that there is an underlying sequence of iid r.v.'s and the representation by this sequence is known plays a crucial role.

Rates in the ASIP for some slowly dynamical systems

Our toy model: let us consider the LSV map (Liverani, Saussol et Vaienti, 1999):

for
$$0 < \gamma < 1$$
, $f(x) = \begin{cases} x(1+2^{\gamma}x^{\gamma}) & \text{if } x \in [0, 1/2[\\ 2x-1 & \text{if } x \in [1/2, 1] \end{cases}$

Graph of f

There exists a unique absolutely continuous *f*-invariant probability measure μ on [0, 1], which is equivalent to the Lebesgue measure and whose density *h* satisfies 0 < c ≤ x^γh(x) ≤ C < ∞.

- There exists a unique absolutely continuous *f*-invariant probability measure μ on [0, 1], which is equivalent to the Lebesgue measure and whose density *h* satisfies 0 < c ≤ x^γh(x) ≤ C < ∞.
- The intermittent behaviour comes from the fact that 0 is a fixed point with f'(0) = 1.

- There exists a unique absolutely continuous *f*-invariant probability measure μ on [0, 1], which is equivalent to the Lebesgue measure and whose density *h* satisfies 0 < c ≤ x^γh(x) ≤ C < ∞.
- The intermittent behaviour comes from the fact that 0 is a fixed point with f'(0) = 1.
- Hence if a point x is close to 0, then its orbit (fⁿ(x))_{n≥0} stays around 0 for a *long* time.

- There exists a unique absolutely continuous *f*-invariant probability measure μ on [0, 1], which is equivalent to the Lebesgue measure and whose density *h* satisfies 0 < c ≤ x^γh(x) ≤ C < ∞.
- The intermittent behaviour comes from the fact that 0 is a fixed point with f'(0) = 1.
- Hence if a point x is close to 0, then its orbit (fⁿ(x))_{n≥0} stays around 0 for a *long* time.
- The degree of intermittency is given by the parameter γ and is quantified by choosing an interval away from 0 such as Y =]1/2, 1] and considering the first return time $\tau: Y \to \mathbb{N}$,

$$\tau(x) = \min\{n \ge 1 \colon f^n(x) \in Y\}.$$

- There exists a unique absolutely continuous *f*-invariant probability measure μ on [0, 1], which is equivalent to the Lebesgue measure and whose density *h* satisfies 0 < c ≤ x^γh(x) ≤ C < ∞.
- The intermittent behaviour comes from the fact that 0 is a fixed point with f'(0) = 1.
- Hence if a point x is close to 0, then its orbit (fⁿ(x))_{n≥0} stays around 0 for a *long* time.
- The degree of intermittency is given by the parameter γ and is quantified by choosing an interval away from 0 such as Y =]1/2, 1] and considering the first return time $\tau: Y \to \mathbb{N}$,

$$\tau(x) = \min\{n \ge 1 \colon f^n(x) \in Y\}.$$

- We have $C^{-1}n^{-1/\gamma} \leq \text{Leb}\,(\tau \geq n) \leq Cn^{-1/\gamma}$ (Gouezel'04 or Young'99)
- For this model, the return time has a weak moment of order $\beta = 1/\gamma$.

$$S_n(\varphi) = \sum_{k=0}^{n-1} \varphi \circ f^k.$$

Florence Merlevède Université Paris-Est-Marne-La-Vallée (UPEN

$$S_n(\varphi) = \sum_{k=0}^{n-1} \varphi \circ f^k.$$

 We consider S_n(φ) as a discrete time random process on the probability space ([0, 1], μ). The increments (φ ∘ fⁿ)_{n≥0} are stationary (since μ is f-invariant) and their covariances decay polynomially:

$$\left|\int \varphi \,\varphi \circ f^n \,d\mu\right| = O\big(n^{-(1-\gamma)/\gamma}\big)\,.$$

$$S_n(\varphi) = \sum_{k=0}^{n-1} \varphi \circ f^k.$$

 We consider S_n(φ) as a discrete time random process on the probability space ([0, 1], μ). The increments (φ ∘ fⁿ)_{n≥0} are stationary (since μ is f-invariant) and their covariances decay polynomially:

$$\left|\int \varphi \,\varphi \circ f^n \,d\mu\right| = O(n^{-(1-\gamma)/\gamma})\,.$$

• If $\gamma < 1/2, \ \textit{n}^{-1/2}\textit{S}_\textit{n}(\varphi) \rightarrow^{\textit{d}} \textit{N}(0,\textit{c}^2)$ with

$$c^{2} = \int \varphi^{2} d\mu + 2 \sum_{n=1}^{\infty} \int \varphi \varphi \circ f^{n} d\mu \qquad (*)$$

$$S_n(\varphi) = \sum_{k=0}^{n-1} \varphi \circ f^k.$$

 We consider S_n(φ) as a discrete time random process on the probability space ([0, 1], μ). The increments (φ ∘ fⁿ)_{n≥0} are stationary (since μ is f-invariant) and their covariances decay polynomially:

$$\left|\int \varphi \,\varphi \circ f^n \,d\mu\right| = O(n^{-(1-\gamma)/\gamma})\,.$$

• If $\gamma < 1/2, \ \textit{n}^{-1/2}\textit{S}_\textit{n}(\varphi) \rightarrow^{d} \textit{N}(0,\textit{c}^2)$ with

$$c^{2} = \int \varphi^{2} d\mu + 2 \sum_{n=1}^{\infty} \int \varphi \varphi \circ f^{n} d\mu \qquad (*)$$

• What about rates in the ASIP when $\gamma < 1/2$?

• The first results were obtained by Melbourne and Nicol (2005) but without explicit rates by using a coupling method due to Philipp and Stout (1975).

- The first results were obtained by Melbourne and Nicol (2005) but without explicit rates by using a coupling method due to Philipp and Stout (1975).
- Using an approximation via reverse martingale difference sequences and an ASIP for reverse MDS due to Cuny-M. ('15), Korepanov-Kosloff-Melbourne '16 proved the ASIP with rates

$$S_n(\varphi) - W_n = \begin{cases} o(n^{\gamma + \varepsilon}), & \gamma \in [1/4, 1/2[\\ O(n^{1/4}(\log n)^{1/2}(\log \log n)^{1/4}), & \gamma \in]0, 1/4[\end{cases}$$

for all $\varepsilon > 0$ (No way to get better bounds with this method!)

- The first results were obtained by Melbourne and Nicol (2005) but without explicit rates by using a coupling method due to Philipp and Stout (1975).
- Using an approximation via reverse martingale difference sequences and an ASIP for reverse MDS due to Cuny-M. ('15), Korepanov-Kosloff-Melbourne '16 proved the ASIP with rates

$$S_n(\varphi) - W_n = \begin{cases} o(n^{\gamma + \varepsilon}), & \gamma \in [1/4, 1/2[\\ O(n^{1/4}(\log n)^{1/2}(\log \log n)^{1/4}), & \gamma \in]0, 1/4[\end{cases}$$

for all $\varepsilon > 0$ (No way to get better bounds with this method!)

• For Hölder continuous or bounded variation observables, using a conditional quantile method, M.-Rio '12, proved the ASIP with rates

$$S_n(\varphi) - W_n = O(n^{\gamma'} (\log n)^{1/2} (\log \log n)^{(1+\varepsilon)\gamma'})$$

for all $\varepsilon > 0$, where $\gamma' = \max\{\gamma, 1/3\}$.

- The first results were obtained by Melbourne and Nicol (2005) but without explicit rates by using a coupling method due to Philipp and Stout (1975).
- Using an approximation via reverse martingale difference sequences and an ASIP for reverse MDS due to Cuny-M. ('15), Korepanov-Kosloff-Melbourne '16 proved the ASIP with rates

$$S_n(\varphi) - W_n = \begin{cases} o(n^{\gamma + \varepsilon}), & \gamma \in [1/4, 1/2[\\ O(n^{1/4}(\log n)^{1/2}(\log \log n)^{1/4}), & \gamma \in]0, 1/4[\end{cases}$$

for all $\varepsilon > 0$ (No way to get better bounds with this method!)

• For Hölder continuous or bounded variation observables, using a conditional quantile method, M.-Rio '12, proved the ASIP with rates

$$S_n(\varphi) - W_n = O(n^{\gamma'} (\log n)^{1/2} (\log \log n)^{(1+\varepsilon)\gamma'})$$

for all $\varepsilon > 0$, where $\gamma' = \max\{\gamma, 1/3\}.$

• Is it possible to get better rates than $O(n^{1/4})$? For $\varphi = Id$ and $f(x) = 2x \mod 1$, one can have much better !

Our results

Theorem (Cuny-Dedecker-Korepanov-M. (2019))

Let $\gamma \in (0, 1/2)$ and $\varphi \colon [0, 1] \to \mathbb{R}$ be a Hölder continuous observable with $\int \varphi \, d\mu = 0$. For the LSV map, the random process $S_n(\varphi)$ satisfies the ASIP with variance c^2 given by (*) and rate $o(n^{\gamma}(\log n)^{\gamma+\epsilon})$ for all $\epsilon > 0$.

Theorem (Cuny-Dedecker-Korepanov-M. (2019))

Let $\gamma \in (0, 1/2)$ and $\varphi \colon [0, 1] \to \mathbb{R}$ be a Hölder continuous observable with $\int \varphi \, d\mu = 0$. For the LSV map, the random process $S_n(\varphi)$ satisfies the ASIP with variance c^2 given by (*) and rate $o(n^{\gamma}(\log n)^{\gamma+\epsilon})$ for all $\epsilon > 0$.

If $c^2 = 0$, the rate in the ASIP can be improved to O(1). Indeed, in this case φ is a *coboundary* in the sense that $\varphi = u - u \circ f$ with u bounded.

Theorem (Cuny-Dedecker-Korepanov-M. (2019))

Let $\gamma \in (0, 1/2)$ and $\varphi \colon [0, 1] \to \mathbb{R}$ be a Hölder continuous observable with $\int \varphi \, d\mu = 0$. For the LSV map, the random process $S_n(\varphi)$ satisfies the ASIP with variance c^2 given by (*) and rate $o(n^{\gamma}(\log n)^{\gamma+\epsilon})$ for all $\epsilon > 0$.

If $c^2 = 0$, the rate in the ASIP can be improved to O(1). Indeed, in this case φ is a *coboundary* in the sense that $\varphi = u - u \circ f$ with u bounded.

However in general the rates are optimal in the following sense :

Theorem (Cuny-Dedecker-Korepanov-M. (2019))

Let $\gamma \in (0, 1/2)$ and $\varphi \colon [0, 1] \to \mathbb{R}$ be a Hölder continuous observable with $\int \varphi \, d\mu = 0$. For the LSV map, the random process $S_n(\varphi)$ satisfies the ASIP with variance c^2 given by (*) and rate $o(n^{\gamma}(\log n)^{\gamma+\epsilon})$ for all $\epsilon > 0$.

If $c^2 = 0$, the rate in the ASIP can be improved to O(1). Indeed, in this case φ is a *coboundary* in the sense that $\varphi = u - u \circ f$ with u bounded.

However in general the rates are optimal in the following sense :

Proposition (C-D-K-M. (2019))

There exists a Hölder continuous observable φ with $\int \varphi \, d\mu = 0$ such that

$$\limsup_{n\to\infty} (n\log n)^{-\gamma} |S_n(\varphi) - W_n| > 0$$

for all Brownian motions $(W_t)_{t\geq 0}$ defined on the same (possibly enlarged) probability space as $(S_n(\varphi))_{n\geq 0}$.

• For a $\gamma \in (0,1)$, let

$$f(x) = \begin{cases} x(1+x^{\gamma}\rho(x)), & x \le 1/2\\ 2x-1, & x > 1/2 \end{cases}$$

where $\rho(x) = C |\log x|^{(1+\varepsilon)\gamma}$ with $\varepsilon > 0$ and $C = 2^{\gamma} (\log 2)^{-(1+\varepsilon)\gamma}$.

□●▶ ▲ 臣▶ ▲ 臣▶ 二 臣

• For a $\gamma \in (0,1)$, let

$$f(x) = \begin{cases} x(1+x^{\gamma}\rho(x)), & x \le 1/2\\ 2x-1, & x > 1/2 \end{cases}$$

where $\rho(x) = C |\log x|^{(1+\varepsilon)\gamma}$ with $\varepsilon > 0$ and $C = 2^{\gamma} (\log 2)^{-(1+\varepsilon)\gamma}$.

• The first return time has a strong moment of order $\beta = 1/\gamma$: $\int_Y \tau^{1/\gamma} d\text{Leb} < \infty$.

• For a $\gamma \in (0,1)$, let

$$f(x) = \begin{cases} x(1+x^{\gamma}\rho(x)), & x \le 1/2\\ 2x-1, & x > 1/2 \end{cases}$$

where $\rho(x) = C |\log x|^{(1+\varepsilon)\gamma}$ with $\varepsilon > 0$ and $C = 2^{\gamma} (\log 2)^{-(1+\varepsilon)\gamma}$.

- The first return time has a strong moment of order $\beta = 1/\gamma$: $\int_Y \tau^{1/\gamma} d\text{Leb} < \infty$.
- In this situation we have

Theorem (Cuny-Dedecker-Korepanov-M. (2019))

Let $\gamma \in (0, 1/2)$ and $\varphi \colon [0, 1] \to \mathbb{R}$ be a Hölder continuous observable with $\int \varphi \, d\mu = 0$. For the Holland map, the random process $S_n(\varphi)$ satisfies the ASIP with variance c^2 given by (*) and rate $o(n^{\gamma})$.

• For a $\gamma \in (0,1)$, let

$$f(x) = \begin{cases} x(1+x^{\gamma}\rho(x)), & x \le 1/2\\ 2x-1, & x > 1/2 \end{cases}$$

where $\rho(x) = C |\log x|^{(1+\varepsilon)\gamma}$ with $\varepsilon > 0$ and $C = 2^{\gamma} (\log 2)^{-(1+\varepsilon)\gamma}$.

- The first return time has a strong moment of order $\beta = 1/\gamma$: $\int_Y \tau^{1/\gamma} d\text{Leb} < \infty$.
- In this situation we have

Theorem (Cuny-Dedecker-Korepanov-M. (2019))

Let $\gamma \in (0, 1/2)$ and $\varphi \colon [0, 1] \to \mathbb{R}$ be a Hölder continuous observable with $\int \varphi \, d\mu = 0$. For the Holland map, the random process $S_n(\varphi)$ satisfies the ASIP with variance c^2 given by (*) and rate $o(n^{\gamma})$.

• Intermittent maps are prototypical examples of *nonuniformly* expanding dynamical systems. Similar results can be obtained in this general setup (the rates depend on the weak or strong moments of the return time).

Florence Merlevède Université Paris-Est-Marne-La-Vallée (UPEN

Main ideas of the proof

• The main idea is to construct a stationary Markov chain $(g_n, n \in \mathbb{N})$ on a countable space S and an observable $\psi : \Omega \to \mathbb{R}$ (here $\Omega \subset S^{\mathbb{N}}$) such that $\int \psi \, d\mathbb{P}_{\Omega} = 0$ and setting

$$X_k = \psi(g_k, g_{k+1}, \ldots)$$
 , $k \ge 0$,

the process $(X_k)_{k\geq 0}$ on the probability space $(\Omega, \mathbb{P}_{\Omega})$ is equal in law to $(\varphi \circ f^k)_{k\geq 0}$ on $([0, 1], \mu)$.

Main ideas of the proof

• The main idea is to construct a stationary Markov chain $(g_n, n \in \mathbb{N})$ on a countable space S and an observable $\psi : \Omega \to \mathbb{R}$ (here $\Omega \subset S^{\mathbb{N}}$) such that $\int \psi \, d\mathbb{P}_{\Omega} = 0$ and setting

$$X_k = \psi(g_k, g_{k+1}, \ldots)$$
 , $k \ge 0$,

the process $(X_k)_{k\geq 0}$ on the probability space $(\Omega, \mathbb{P}_{\Omega})$ is equal in law to $(\varphi \circ f^k)_{k\geq 0}$ on $([0, 1], \mu)$.

• Our Markov chain is in the spirit of the classical Young towers.

Main ideas of the proof

• The main idea is to construct a stationary Markov chain $(g_n, n \in \mathbb{N})$ on a countable space S and an observable $\psi : \Omega \to \mathbb{R}$ (here $\Omega \subset S^{\mathbb{N}}$) such that $\int \psi d\mathbb{P}_{\Omega} = 0$ and setting

$$X_k=\psi(g_k,g_{k+1},\ldots)$$
 , $k\geq 0$,

the process $(X_k)_{k\geq 0}$ on the probability space $(\Omega, \mathbb{P}_{\Omega})$ is equal in law to $(\varphi \circ f^k)_{k\geq 0}$ on $([0, 1], \mu)$.

- Our Markov chain is in the spirit of the classical Young towers.
- Recall that Y =]1/2, 1] and τ: Y → N be the inducing time τ(x) = min{n ≥ 1: fⁿ(x) ∈ Y}. Let F : Y → Y be the induced map: F(x) = f^{τ(x)}(x). Let α be the partition of Y into the intervals where τ is constant.

Main ideas of the proof

• The main idea is to construct a stationary Markov chain $(g_n, n \in \mathbb{N})$ on a countable space S and an observable $\psi : \Omega \to \mathbb{R}$ (here $\Omega \subset S^{\mathbb{N}}$) such that $\int \psi d\mathbb{P}_{\Omega} = 0$ and setting

$$X_k = \psi(g_k, g_{k+1}, \ldots)$$
 , $k \ge 0$,

the process $(X_k)_{k\geq 0}$ on the probability space $(\Omega, \mathbb{P}_{\Omega})$ is equal in law to $(\varphi \circ f^k)_{k\geq 0}$ on $([0, 1], \mu)$.

- Our Markov chain is in the spirit of the classical Young towers.
- Recall that Y =]1/2, 1] and τ: Y → N be the inducing time τ(x) = min{n ≥ 1: fⁿ(x) ∈ Y}. Let F : Y → Y be the induced map: F(x) = f^{τ(x)}(x). Let α be the partition of Y into the intervals where τ is constant.
- Let A denote the set of all finite words in the alphabet α, not including the empty word. Denote by w = a₀ ··· a_{n-1} an element of A. Let also h: A → N, h(w) = τ(a₀) + ··· + τ(a_{n-1})

• Let
$$S = \{(w, \ell) \in \mathcal{A} \times \mathbb{Z} : 0 \le \ell < h(w)\}.$$

æ

-2

- Let $S = \{(w, \ell) \in \mathcal{A} \times \mathbb{Z} : 0 \le \ell < h(w)\}.$
- Let g₀ ∈ S be distributed according to a certain ν and (ε_k) be a sequence of iid r.v. with values in A, distribution P_A and independent from g₀.

• Let
$$S = \{(w, \ell) \in \mathcal{A} \times \mathbb{Z} : 0 \le \ell < h(w)\}.$$

Let g₀ ∈ S be distributed according to a certain ν and (ε_k) be a sequence of iid r.v. with values in A, distribution P_A and independent from g₀.

• Then, for any $n \ge 0$, we define

$$g_{n+1}=U(g_n,\varepsilon_{n+1})$$

• Let
$$S = \{(w, \ell) \in \mathcal{A} \times \mathbb{Z} : 0 \le \ell < h(w)\}.$$

- Let g₀ ∈ S be distributed according to a certain ν and (ε_k) be a sequence of iid r.v. with values in A, distribution P_A and independent from g₀.
- Then, for any $n \ge 0$, we define

$$g_{n+1} = U(g_n, \varepsilon_{n+1})$$

where

$$U((w, \ell), \varepsilon) = \begin{cases} (w, \ell+1), & \ell < h(w) - 1, \\ (\varepsilon, 0), & \ell = h(w) - 1. \end{cases}$$

• Let
$$S = \{(w, \ell) \in \mathcal{A} \times \mathbb{Z} : 0 \le \ell < h(w)\}.$$

- Let g₀ ∈ S be distributed according to a certain ν and (ε_k) be a sequence of iid r.v. with values in A, distribution P_A and independent from g₀.
- Then, for any $n \ge 0$, we define

$$g_{n+1} = U(g_n, \varepsilon_{n+1})$$

where

$$U((w, \ell), \varepsilon) = \begin{cases} (w, \ell+1), & \ell < h(w) - 1, \\ (\varepsilon, 0), & \ell = h(w) - 1. \end{cases}$$

 For the LSV and the Holland maps the constructed Markov chain is aperiodic.

• We shall prove an ASIP for the partial sums associated with $(X_k)_{k\geq 0}$ where $X_k = \psi(g_k, g_{k+1}, \ldots)$.

э

- We shall prove an ASIP for the partial sums associated with $(X_k)_{k\geq 0}$ where $X_k = \psi(g_k, g_{k+1}, ...)$.
- The function ψ satisfies the following property: for $a = (g_0, \ldots, g_N, g_{N+1}, \ldots)$ and $b = (g_0, \ldots, g_N, g'_{N+1}, \ldots)$ with $g_{N+1} \neq g'_{N+1}$,

$$|\psi(\mathsf{a}) - \psi(b)| \leq C heta^{\sum_{k=0}^{N} \mathbf{1}_{\{g_k \in \mathcal{S}_0\}}}$$
 ,

where $S_0 = \{(w, 0) : w \in \mathcal{A}\}$ and $\theta \in]0, 1[.$

- We shall prove an ASIP for the partial sums associated with $(X_k)_{k\geq 0}$ where $X_k = \psi(g_k, g_{k+1}, ...)$.
- The function ψ satisfies the following property: for $a = (g_0, \ldots, g_N, g_{N+1}, \ldots)$ and $b = (g_0, \ldots, g_N, g'_{N+1}, \ldots)$ with $g_{N+1} \neq g'_{N+1}$,

$$|\psi(\mathsf{a}) - \psi(b)| \leq C heta^{\sum_{k=0}^N \mathbf{1}_{\{g_k \in S_0\}}}$$
 ,

where $S_0 = \{(w, 0) : w \in \mathcal{A}\}$ and $\theta \in]0, 1[$.

• With the help of the above property one can prove that there exists a measurable function G_m such that, for any $r \ge 1$,

$$\|X_k - G_m(\varepsilon_{k-m},\ldots,\varepsilon_{k+m})\|_1 \ll \mathbb{P}(T \ge m) + m^{-r/2}$$

where T is the meeting time

$$T = \inf\{n \ge 0 : g_n = g_n^*\}$$

here g_0^* has distribution ν and is independent of $(g_0, (\varepsilon_k)_{k \ge 1})$ and $g_{n+1}^* = U(g_n^*, \varepsilon_{n+1})$.

• The moments of *T* can be handled with Lindvall's results ('79) (see also Prop 4.15 in Pitman '74).

- The moments of *T* can be handled with Lindvall's results ('79) (see also Prop 4.15 in Pitman '74).
- Note that before meeting the chains do not share the same innovations and therefore are independent to each other.

- The moments of *T* can be handled with Lindvall's results ('79) (see also Prop 4.15 in Pitman '74).
- Note that before meeting the chains do not share the same innovations and therefore are independent to each other.

• Let
$$\beta = 1/\gamma$$
. If $\int \tau^{\beta} d\text{Leb} < \infty$ then $\mathbb{E}(T^{\beta-1}) < \infty$

- The moments of *T* can be handled with Lindvall's results ('79) (see also Prop 4.15 in Pitman '74).
- Note that before meeting the chains do not share the same innovations and therefore are independent to each other.

• Let
$$\beta = 1/\gamma$$
. If $\int \tau^{\beta} d\text{Leb} < \infty$ then $\mathbb{E}(T^{\beta-1}) < \infty$

• If Leb $(\tau \ge n) \le Cn^{-\beta}$ then $\mathbb{E}(h_{\beta,\eta}(\tau)) < \infty$ for any $\eta > 1$ where $h_{\beta,\eta}(x) = x^{\beta-1}(\log(1+x))^{-\eta}$.

- The moments of *T* can be handled with Lindvall's results ('79) (see also Prop 4.15 in Pitman '74).
- Note that before meeting the chains do not share the same innovations and therefore are independent to each other.

• Let
$$\beta = 1/\gamma$$
. If $\int \tau^{\beta} d\text{Leb} < \infty$ then $\mathbb{E}(T^{\beta-1}) < \infty$

- If Leb $(\tau \ge n) \le Cn^{-\beta}$ then $\mathbb{E}(h_{\beta,\eta}(T)) < \infty$ for any $\eta > 1$ where $h_{\beta,\eta}(x) = x^{\beta-1}(\log(1+x))^{-\eta}$.
- The 2*m*-dependent approximation

$$\|X_k - G_m(\varepsilon_{k-m},\ldots,\varepsilon_{k+m})\|_1 \ll \mathbb{P}(T \ge m) + m^{-r/2}$$

allows to adapt the scheme of proof developped by Berkes-Liu-Wu ('14) to prove KMT with rate $o(n^{1/p})$ for functions of iid having a moment of order p, under a weak dependence condition.

- The moments of *T* can be handled with Lindvall's results ('79) (see also Prop 4.15 in Pitman '74).
- Note that before meeting the chains do not share the same innovations and therefore are independent to each other.

• Let
$$\beta = 1/\gamma$$
. If $\int \tau^{\beta} d\text{Leb} < \infty$ then $\mathbb{E}(T^{\beta-1}) < \infty$

- If Leb $(\tau \ge n) \le Cn^{-\beta}$ then $\mathbb{E}(h_{\beta,\eta}(T)) < \infty$ for any $\eta > 1$ where $h_{\beta,\eta}(x) = x^{\beta-1}(\log(1+x))^{-\eta}$.
- The 2*m*-dependent approximation

$$\|X_k - G_m(\varepsilon_{k-m},\ldots,\varepsilon_{k+m})\|_1 \ll \mathbb{P}(T \ge m) + m^{-r/2}$$

allows to adapt the scheme of proof developped by Berkes-Liu-Wu ('14) to prove KMT with rate $o(n^{1/p})$ for functions of iid having a moment of order p, under a weak dependence condition.

 Their proof consists first of providing a conditional Gaussian approximation by freezing some part of the (ε_k)_k, making suitable blocks and applying Sakhanenko's '06 result, and after of proceeding to a unconditional Gaussian approximation. I. Berkes, W. Liu, W. and W.B. Wu, *Komlós-Major-Tusnády* approximation under dependence, Ann. Probab. **42** (2014), 794-817.

C. Cuny, J. Dedecker, A. Korepanov, F. Merlevède, *Rates in almost sure invariance principle for slowly mixing dynamical systems*, 2019, Ergodic Theory and Dynamical Systems.

C. Cuny, J. Dedecker, A. Korepanov, F. Merlevède, *Rates in almost sure invariance principle for quickly mixing dynamical systems*, 2019, Stochastics and Dynamics.

J. Komlós, P. Major, G. Tusnády, *An approximation of partial sums of independent RV'-s and the sample DF*. I; II, Z. Wahrscheinlichkeitstheor. verw. Geb. **32** (1975), 111–131; **34** (1976), 34–58.

□ ▶ < □ ▶ < □</p>

A.I. Sakhanenko, *Estimates in the invariance principle in terms of truncated power moments*. Sibirsk. Mat. Zh. **47** (2006), 1355-1371.

Thank you for your attention!