Pathwise techniques for rough differential equations: existence and longtime behavior

María Garrido-Atienza (University of Sevilla, Spain)

Joint work with
Hongjun Gao (Nanjin Normal University, China)
Kening Lu (BYU, USA)
David Nualart (University of Kansas, USA)
Björn Schmalfuß (University of Jena, Germany)

[^0]
OUTLINE

1. Motivation and Preliminaries
2. Solving differential equations with fBm by using Fractional calculus:

- Case $H \in(1 / 2,1)$.
- Case $H \in(1 / 3,1 / 2]$. Exponential stability of the trivial solution.

3. Solving differential equations with $\mathrm{fBm} H \in(1 / 3,1 / 2]$ by using Rough paths.

Motivation and Preliminaires

Goal: To study the existence and uniqueness of pathwise solutions as well as the random dynamical system generated by

$$
d u=A u d t+G(u) d \omega, \quad u(0)=u_{0} \in V
$$

- Assume that A generates a C_{0}-semigroup, G Lipschitz-continuous, ω Brownian motion.
Da Prato \& Zabczyk (1992): For any $u_{0} \in V$ there exists a mild solution almost surely which is continuous, adapted and unique modulo \mathbb{P}.
Does this SPDE generate an RDS? Special answers

$$
G(u) d \omega=d \omega, \quad G(u) d \omega=u d \omega
$$

- ω is a Brownian motion: exceptional sets contradict the definition of an RDS.
Problem of infinite dimensional stochastic flows: Kolmogorov Test does not make sense for SPDE!
- ω is a fractional Brownian motion (fBm): Pathwise interpretation of the integral with respect to the fBm .

Given $H \in(0,1)$, a continuous centered Gaussian process $\beta^{H}(t), t \in \mathbb{R}$, with

$$
\mathbb{E} \beta^{H}(t) \beta^{H}(s)=\frac{1}{2}\left(|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}\right), \quad t, s \in \mathbb{R}
$$

is a one-dimensional fractional Brownian motion, and H is the Hurst parameter.
Let $(V,|\cdot|)$ be a separable Hilbert space, Q is a bounded and symmetric linear operator on V of trace class, i.e. for $\left(e_{i}\right)_{i \in \mathbb{N}}$ an orthonormal basis in V there exists a sequence of nonnegative numbers $\left(q_{i}\right)_{i \in \mathbb{N}}$ such that $\operatorname{tr} Q=\sum_{i=1}^{\infty} q_{i}<\infty$.

$$
B^{H}(t)=\sum_{i=1}^{\infty} \sqrt{q_{i}} e_{i} \beta_{i}^{H}(t), \quad t \in \mathbb{R},
$$

is a continuous V-valued $\mathrm{fBm} B^{H}$ with Hurst parameter H, where $\left(\beta_{i}^{H}\right)_{i \in \mathbb{N}}$ is a sequence of stochastically one-dimensional fBm .
Lemma. The quadruple $\left(C_{0}(\mathbb{R}, V), \mathcal{F}, \mathbb{P},\left\{\theta_{t}\right\}_{t \in \mathbb{R}}\right)$, where θ_{t} is the Wiener shift:

$$
\theta_{t} \omega(\cdot)=\omega(\cdot+t)-\omega(t), \quad t \in \mathbb{R}, \omega \in \Omega
$$

is an ergodic metric dynamical system. We identify $B^{H}(\cdot, \omega)$ and $\omega(\cdot)$.

Moreover, there exists a version with $\beta^{\prime}-\mathbf{H o ̈ l d e r}$ continuous paths for any $\beta^{\prime}<H$.

Fractional Calculus: case $H \in(1 / 2,1)$.

For $f \in C^{\beta}([0, T] ; V), \omega \in C^{\beta^{\prime}}([0, T] ; V), \alpha<\beta, 1-\alpha<\beta^{\prime}$ we interpret the stochastic integral as the generalized Stieltjes integral

$$
\int_{0}^{T} f d \omega=(-1)^{\alpha} \int_{0}^{T} D_{0+}^{\alpha} f(r) D_{T-}^{1-\alpha} \omega_{T-}(r) d r
$$

where $\omega_{T-}(r):=\omega(r)-\omega(T)$ and

$$
\begin{aligned}
D_{0+}^{\alpha} f(r) & =\frac{1}{\Gamma(1-\alpha)}\left(\frac{f(r)}{r^{\alpha}}+\alpha \int_{0}^{r} \frac{f(r)-f(q)}{(r-q)^{\alpha+1}} d q\right), \\
D_{T-}^{1-\alpha} \omega_{T-}(r) & =\frac{(-1)^{\alpha}}{\Gamma(\alpha)}\left(\frac{\omega(r)-\omega(T)}{(T-r)^{1-\alpha}}+(1-\alpha) \int_{r}^{T} \frac{\omega(r)-\omega(q)}{(q-r)^{2-\alpha}} d q\right) .
\end{aligned}
$$

- Samko, Kilbas and Marichev (1993): exhaustive survey on classical fractional calculus.
- This integral coincides with the classical Young integral.
- Zähle (1998): generalization of these integrals in fractional Sobolev type spaces (also for Hölder spaces).
- Pathwise integral:

Let $f \in C^{\beta}([0, T] ; V)$ and $\omega \in C^{\beta^{\prime}}([0, T] ; V)$, where $\alpha<\beta$ and $\alpha+\beta^{\prime}>1$. Then

$$
\left|\int_{s}^{t} f d \omega\right| \leq c\|f\|_{\beta}\|\omega\|_{\beta^{\prime}}(t-s)^{\beta^{\prime}}
$$

- Nualart \& Rascanu (2002); Maslowski \& Nualart (2003); G-A, Lu \& Schmalfuß (2010); Chen, Gao, G-A, Schmalfuß (2014), Nguyen Dinh Cong, Luu Hoang Duc, Phan Thanh Hong..... Assumption: $G \in C_{b}^{2}$.
- SPDE's with noise $\omega \in C^{\beta^{\prime}}([0, T] ; V), \beta^{\prime} \in(1 / 2,1)$ generate a random dynamical system.

Fractional Calculus: case $H \in(1 / 3,1 / 2]$.

We consider the system

$$
d u(t)=F(u(t)) d t+G(u(t)) d \omega(t), \quad u(0)=u_{0}
$$

where $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $G: \mathbb{R}^{d} \rightarrow L\left(\mathbb{R}^{m}, \mathbb{R}^{d}\right)$ are appropriate functions and ω is a β-Hölder-continuous noisy input with $\beta \in(1 / 3,1 / 2)$, considered from \mathbb{R}^{+}to \mathbb{R}^{m}. We look for u such that

$$
u(t)=u_{0}+\int_{0}^{t} F(u(r)) d r+\int_{0}^{t} G(u(r)) d \omega, \quad t \in[0, T] .
$$

Remember: when $\beta \in(1 / 2,1)$, if $\alpha+\beta>1$ and $\beta>\alpha$,

$$
\left|\int_{s}^{t} G(u(r)) d \omega\right| \leq c\|\omega\|_{\beta, 0, T}(t-s)^{\beta}\left(1+\|u\|_{\beta}\right)
$$

Here $\beta \ngtr \alpha!!!!!!$, hence $D_{s+}^{\alpha} G(u(\cdot))[r]$ is not well-defined. Nevertheless, we can provide an explicit formula for

$$
\int_{0}^{t} G(u(r)) d \omega
$$

which involves u, ω and the tensor $u \otimes \omega$.

Hu and Nualart (2009): $G \in C_{b}^{3}\left(\mathbb{R}^{d}\right)$, $u \in C^{\beta}\left([0, T] ; \mathbb{R}^{d}\right), \omega \in C^{\beta}\left([0, T] ; \mathbb{R}^{d}\right), 1 / 3 \leq \beta<$ $1 / 2,1-\beta<\alpha<2 \beta, \alpha<\frac{\beta+1}{2}$, such that

$$
(u \otimes \omega)(s, r)+(u \otimes \omega)(r, t)+(u(r)-u(s)) \otimes(\omega(t)-\omega(r))=(u \otimes \omega)(s, t) .
$$

For smooth $\omega,(s, r) \in \Delta_{0, T}=\{(s, r): 0 \leq s \leq r \leq T\}$,

$$
(u \otimes \omega)(s, r)=\int_{s}^{r}(u(\tau)-u(s)) \otimes d \omega(\tau) \in C^{2 \beta}\left(\Delta_{0, T}, \mathbb{R}^{d} \otimes \mathbb{R}^{d}\right)
$$

$D_{s+}^{\alpha} G(u(\cdot))[r]$ is not well-defined. However, the expression

$$
\begin{aligned}
\hat{D}_{s+}^{\alpha} G(u(\cdot))[r]= & \frac{1}{\Gamma(1-\alpha)}\left(\frac{G(u(r))}{(r-s)^{\alpha}}\right. \\
& +\alpha \int_{s}^{r} \overbrace{\frac{\sim \frac{1}{2} D^{2} G(u(q))(u(r)-u(q))^{2} \sim\|u\|_{\beta}^{2}(r-q)^{2 \beta}}{G(u(r))-G(u(q))-D G(u(q))(u(r)-u(q))}}^{(r-q)^{1+\alpha}} d r)
\end{aligned}
$$

is well-defined, and

$$
\begin{aligned}
\int_{0}^{T} G(u(r)) d \omega & =(-1)^{\alpha} \int_{0}^{T} \hat{D}_{0+}^{\alpha} G(u(\cdot))[r] D_{T-}^{1-\alpha} \omega_{T-}[r] d r \\
& -(-1)^{2 \alpha-1} \int_{0}^{T} D_{0+}^{2 \alpha-1}(D G(u(\cdot)))[r] D_{T-}^{1-\alpha} \mathcal{D}_{T-}^{1-\alpha}(u \otimes \omega)[r] d r
\end{aligned}
$$

where

$$
\mathcal{D}_{T-}^{1-\alpha}(u \otimes \omega)[r]=\frac{(-1)^{1-\alpha}}{\Gamma(\alpha)}\left(\frac{(u \otimes \omega)(r, T)}{(T-r)^{1-\alpha}}+(1-\alpha) \int_{r}^{T} \frac{(u \otimes \omega)(r, q)}{(q-r)^{2-\alpha}} d q\right) .
$$

The path-area equation
To solve

$$
u(t)=u_{0}+\int_{0}^{t} F(u(r)) d r+\int_{0}^{t} G(u(r)) d \omega
$$

we can solve the system (u, v) with path component

$$
\begin{aligned}
u(t)=u_{0} & +\int_{0}^{t} F(u(r)) d r+(-1)^{\alpha} \int_{s}^{t} \hat{D}_{s+}^{\alpha} G(u(\cdot))[r] D_{t-}^{1-\alpha} \omega_{t-}[r] d r \\
& -(-1)^{2 \alpha-1} \int_{s}^{t} D_{s+}^{2 \alpha-1} D G(u(\cdot))[r] D_{t-}^{1-\alpha} \mathcal{D}_{t-}^{1-\alpha} v[r] d r
\end{aligned}
$$

and with area component defined by

$$
\begin{aligned}
& v(s, t)=\int_{s}^{t} \int_{s}^{r} F(u(q)) d q \otimes d \omega(r) \\
& \quad+(-1)^{\alpha} \int_{s}^{t} \hat{D}_{s+}^{\alpha} G(u(\cdot))[r] D_{t-}^{1-\alpha}(\omega \otimes \omega)(\cdot, t)[r] d r \\
& \quad-(-1)^{2 \alpha-1} \int_{s}^{t} D_{s+}^{2 \alpha-1} D G(u(\cdot))[r] D_{t-}^{1-\alpha} \mathcal{D}_{t-}^{1-\alpha}(u \otimes(\omega \otimes \omega)(t))(\cdot, t)[r] d r
\end{aligned}
$$

Then the triplet (u, ω, v) satisfies the Chen equality

$$
v(s, \tau)+v(\tau, t)+(u(\tau)-u(s)) \otimes(\omega(t)-\omega(\tau))=v(s, t)
$$

The path-area equation

- Phase space: $W=W_{0, T}=W_{0, T}(\omega)$ consisting of pairs

$$
U:=(u, v) \in C^{\beta}\left([0, T] ; \mathbb{R}^{d}\right) \times C^{2 \beta}\left(\Delta_{0, T} ; \mathbb{R}^{d} \otimes \mathbb{R}^{m}\right)
$$

such that Chen's relation holds, and we equip this space with the norm

$$
\|U\|_{W}=\|u\|_{\beta, 0, T}+\|v\|_{2 \beta, \Delta_{0, T}} .
$$

- Theorem: Assume that $F \in C_{b}^{1}\left(\mathbb{R}^{d}\right), G \in C_{b}^{3}\left(\mathbb{R}^{d}\right), \omega \in C^{\beta}\left([0, T] ; \mathbb{R}^{d}\right), 1 / 3<\beta<$ $1 / 2$. Then there exists a unique solution $U=(u, v) \in W$ on any $[0, T] \times \Delta_{0, T}$. Moreover,

$$
\begin{equation*}
\|U\|_{W} \leq C(\omega)\left\|u_{0}\right\|+\tilde{C}(\omega)\left(\|F\|_{C_{b}^{1}}+\|G\|_{C_{b}^{2}}\right) T^{\beta}\left(1+\|U\|_{W}^{2}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& C(\omega):=c\left(1+\|\omega\|_{\beta, 0, T}\right) \\
& \tilde{C}(\omega):=c\left(1+\|\omega\|_{\beta, 0, T}+\|\omega\|_{\beta, 0, T}^{2}+\|(\omega \otimes \omega)\|_{2 \beta, \Delta_{0, T}}\right) .
\end{aligned}
$$

- The u component of these solutions generates a random dynamical system $\varphi: \mathbb{R}^{+} \times \Omega \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.
- Can be extended to stochastic PDEs (G-A, Lu and Schmalfuß, 2015, 2016).

Rough Paths

- We can solve dynamical systems driven by a β-Hölder continuous signal when $\beta \in\left(\frac{1}{3}, \frac{1}{2}\right)$ using techniques of fractional calculus.
But the rough differential equation is transformed into a complicated system of equations involving u, v and $u \otimes(\omega \otimes \omega)$.
- We will solve m-dimensional dynamical systems

$$
d Y_{t}=f\left(Y_{t}\right) d X_{t}, \quad Y_{0}=\xi
$$

driven by a d-dimensional control function X, based on the fact that we can define the integral

$$
\int_{0}^{t} Y_{s} d X_{s}
$$

assuming that Y is controlled by X in the Gubinelli's sense

$$
Y_{t}-Y_{s}=\mathcal{Y}_{s}\left(X_{t}-X_{s}\right)+R_{s t}^{Y},
$$

and using compensated fractional derivatives of Hu and Nualart.
Y. Itô (dissertation, 2015), G.-A., Nualart and Schmalfuß (in preparation).

A β-Hölder continuous rough path is an element

$$
(X, \mathbb{X}) \in \mathcal{C}^{\beta}\left([0, T] ; \mathbb{R}^{d}\right):=C^{\beta}\left([0, T] ; \mathbb{R}^{d}\right) \times C^{2 \beta}\left(\Delta[0, T] ; \mathbb{R}^{d \times d}\right)
$$

that satisfies for any $0 \leq r \leq \theta \leq t \leq T$ the Chen's relation

$$
\mathbb{X}_{r t}=\mathbb{X}_{r \theta}+\mathbb{X}_{\theta t}+X_{r \theta} \otimes X_{\theta t}
$$

For Y defined on the simplex $\Delta_{0, T}$ and $\gamma>0$, denote

$$
\left(\Delta_{\gamma} Y\right)_{t}=\int_{0}^{t} \frac{\left|Y_{s t}\right|}{(t-s)^{\gamma}} d s
$$

where $t \in[0, T]$ (note that if Y is defined on $[0, T], Y_{s t}=Y_{t}-Y_{s}$).
We denote by $\mathcal{R}_{\gamma}=\mathcal{R}_{\gamma}\left(\mathbb{R}^{m}\right)$ the set of measurable functions $R: \Delta_{0, T} \mapsto \mathbb{R}^{m}$ such that

$$
\|R\|_{\mathcal{R}_{\gamma}}:=\sup _{t \in[0, T]}\left(\Delta_{\gamma} R\right)_{t}+\sup _{(r, t) \in \Delta[0, T]}\left|R_{r t}\right|<\infty
$$

and by $\mathcal{Y}_{\gamma}=\mathcal{Y}_{\gamma}\left(\mathbb{R}^{m}\right)$ the set of functions $Y:[0, T] \mapsto \mathbb{R}^{m}$ such that

$$
\|Y\|_{y_{\gamma}}:=\sup _{t \in[0, T]}\left(\left(\Delta_{\gamma} Y\right)_{t}+\left|Y_{t}\right|\right)=\sup _{t \in[0, T]}\left(\Delta_{\gamma} Y\right)_{t}+\|Y\|_{\infty}<\infty .
$$

The sets \mathcal{R}_{γ} and \mathcal{Y}_{γ} are Banach spaces.

Fix $\alpha \in(0,1)$ such that

$$
1-\beta<\alpha<2 \beta \quad \text { and } \quad 2 \alpha<1+\beta
$$

It is easy to see that, under these constraints we have

$$
C^{\beta}\left([0, T] ; \mathbb{R}^{d}\right) \subset \mathcal{Y}_{2 \alpha}\left(\mathbb{R}^{d}\right), \quad C^{2 \beta}\left(\Delta_{0, T} ; \mathbb{R}^{d \times d}\right) \subset \mathcal{R}_{\alpha+1}\left(\mathbb{R}^{d \times d}\right)
$$

Let $X \in C^{\beta}\left([0, T] ; \mathbb{R}^{d}\right)$. A function $Y:[0, T] \rightarrow \mathbb{R}^{m}$ is controlled by X if there exist $\mathcal{Y} \in \mathcal{Y}_{2 \alpha}\left(\mathbb{R}^{m \times d}\right)$ and $R^{Y} \in \mathcal{R}_{\alpha+1}\left(\mathbb{R}^{m}\right)$ such that

$$
Y_{r t}=\mathcal{Y}_{r} X_{r t}+R_{r t}^{Y}, \quad(r, t) \in \Delta_{0, T} .
$$

Here $(Y, \mathcal{Y}) \in \mathcal{D}_{X, \alpha}\left(\mathbb{R}^{m}\right)$ is called a controlled rough path, while \mathcal{Y} is the $\mathrm{Gu}-$ binelli's derivative of Y.

Given $(Y, \mathcal{Y}) \in \mathcal{D}_{X, \alpha}\left(\mathbb{R}^{m}\right)$, one can define

$$
\|(Y, \mathcal{Y})\|_{\mathcal{D}_{X, \alpha}}:=\|\mathcal{Y}\|_{\nu_{2 \alpha}}+\left\|R^{Y}\right\|_{\mathcal{R}_{\alpha+1}}+\left|Y_{0}\right|+\left|\mathcal{Y}_{0}\right|
$$

Then $\|\cdot\|_{\mathcal{D}_{X, \alpha}}$ is a norm in $\mathcal{D}_{X, \alpha}\left(\mathbb{R}^{m}\right)$.

Lemma Consider a rough path $(X, \mathbb{X}) \in \mathcal{C}^{\beta}\left([0, T] ; \mathbb{R}^{d}\right)$ and a controlled path $(Y, \mathcal{Y}) \in$ $\mathcal{D}_{X, \alpha}\left(\mathbb{R}^{m}\right)$. Then, for any $0 \leq s \leq t \leq T$, the integral

$$
\begin{aligned}
Z_{s t}:=\int_{s}^{t} Y_{r} d X_{r}= & (-1)^{\alpha} \int_{s}^{t}\left(\hat{D}_{s+}^{\alpha} Y\right)_{r}\left(D_{t-}^{1-\alpha} X_{t-}\right)_{r} d r \\
& -(-1)^{2 \alpha-1} \int_{s}^{t}\left(D_{s+}^{2 \alpha-1} \mathcal{Y}\right)_{r}\left(D_{t-}^{1-\alpha} \mathcal{D}_{t-}^{1-\alpha} \mathbb{X}\right)_{r} d r
\end{aligned}
$$

is well-defined. Moreover,

$$
\begin{aligned}
\left|\int_{s}^{t} Y_{\theta} d X_{\theta}\right| & \leq c\|X\|_{\beta}\left((t-s)^{\beta}\|Y\|_{\nu_{2 \alpha}}+(t-s)^{\alpha+\beta}\left\|R^{Y}\right\|_{\mathcal{R}_{\alpha+1}}\right) \\
& +c\left(\|\mathbb{X}\|_{2 \beta}+\|X\|_{\beta}^{2}\right)\|\mathcal{Y}\|_{y_{2 \alpha}}\left((t-s)^{2 \beta}+(t-s)^{2 \alpha+2 \beta-1}\right),
\end{aligned}
$$

where $c>0$ only depends on α and β.
But here

$$
\begin{aligned}
\left(\hat{D}_{s+}^{\alpha} Y\right)_{r} & =\frac{1}{\Gamma(1-\alpha)}\left(\frac{Y_{r}}{(r-s)^{\alpha}}+\alpha \int_{s}^{r} \frac{Y_{q r}-\mathcal{Y}_{q} X_{q r}}{(r-q)^{1+\alpha}} d q\right) \\
& =\frac{1}{\Gamma(1-\alpha)}\left(\frac{Y_{r}}{(r-s)^{\alpha}}+\alpha \int_{s}^{r} \frac{R_{q r}^{Y}}{(r-q)^{1+\alpha}} d q\right) .
\end{aligned}
$$

Theorem Consider $(X, \mathbb{X}) \in \mathcal{C}^{\beta}\left([0, T] ; \mathbb{R}^{d}\right), \beta \in(1 / 3,1 / 2]$ and let $(Y, \mathcal{Y}) \in \mathcal{D}_{X, \alpha}\left(\mathbb{R}^{m \times d}\right)$. Let $Z_{t}:=Z_{0 t}$ be the process defined above. Then $(Z, Y) \in \mathcal{D}_{X, \alpha}\left(\mathbb{R}^{m}\right)$, that is,

$$
Z_{s t}=Y_{s} X_{s t}+R_{s t}^{Z}
$$

with the residual R^{Z} given by

$$
R_{s t}^{Z}=(-1)^{\alpha} \int_{s}^{t}\left(\widehat{D}_{s+}^{\alpha} Y_{s+}\right)_{r}\left(D_{t-}^{1-\alpha} X_{t-}\right)_{r} d r-(-1)^{2 \alpha-1} \int_{s}^{t}\left(D_{s+}^{2 \alpha-1} \mathcal{Y}\right)_{r}\left(D_{t-}^{1-\alpha} \mathcal{D}_{t-}^{1-\alpha} \mathbb{X}\right)_{r} d r
$$

where $\left(Y_{s+}\right)_{r}=Y_{s r}$.

Stability of $\mathcal{D}_{X, \alpha}\left(\mathbb{R}^{m}\right)$ under a smooth path: We show that the composition of a controlled path with a regular function is still a controlled path.

Lemma Let $\left.f \in C_{b}^{2}\left(\mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)\right)$. Consider $(X, \mathbb{X}) \in \mathcal{C}^{\beta}\left([0, T] ; \mathbb{R}^{d}\right)$ for some $\beta \in(1 / 3,1 / 2]$ and let $(Y, \mathcal{Y}) \in \mathcal{D}_{X, \alpha}\left(\mathbb{R}^{m}\right)$. Then $\left(f(Y), \mathcal{Y}^{f(Y)}\right) \in \mathcal{D}_{X, \alpha}\left(\mathbb{R}^{m \times d}\right)$, with residual term $R^{f(Y)}$, where

$$
\mathcal{Y}_{t}^{f(Y)}:=f^{\prime}\left(Y_{t}\right) \mathcal{Y}_{t}, \quad R_{s t}^{f(Y)}:=f\left(Y_{t}\right)-f\left(Y_{s}\right)-f^{\prime}\left(Y_{s}\right) \mathcal{Y}_{s} X_{s t} .
$$

General definition of the integral:
Lemma Assume $f \in C_{b}^{2}\left(\mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right),(X, \mathbb{X}) \in \mathcal{C}^{\beta}\left([0, T] ; \mathbb{R}^{d}\right)$. Let $(Y, \mathcal{Y}) \in \mathcal{D}_{X, \alpha}\left(\mathbb{R}^{m}\right)$. Then the integral

$$
\begin{aligned}
\mathcal{Z}_{s t}:=\int_{s}^{t} f\left(Y_{r}\right) d X_{r} & =(-1)^{\alpha} \int_{s}^{t}\left(\hat{D}_{s+}^{\alpha} f(Y)\right)_{\tau}\left(D_{t-}^{1-\alpha} X_{t-}\right)_{\tau} d \tau \\
& -(-1)^{2 \alpha-1} \int_{s}^{t}\left(D_{s+}^{2 \alpha-1} \mathcal{Y}^{f(Y)}\right)_{\tau}\left(D_{t-}^{1-\alpha} \mathcal{D}_{t-}^{1-\alpha} \mathbb{X}\right)_{\tau} d \tau
\end{aligned}
$$

is well-defined.

Theorem Assume $\xi \in \mathbb{R}^{m}, f \in C_{b}^{3}\left(\mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right),(X, \mathbb{X}) \in \mathcal{C}^{\beta}\left([0, T] ; \mathbb{R}^{d}\right)$. Then for any $t \in[0, T]$ there exists a unique $(Y, \mathcal{Y}) \in \mathcal{D}_{X, \alpha}\left(\mathbb{R}^{m}\right)$ solution of

$$
Y_{t}=\xi+\int_{0}^{t} f\left(Y_{r}\right) d X_{r}=: \xi+\mathcal{Z}_{0 t}, \quad t \geq 0
$$

Sketch of the proof. We apply a fixed point theorem applied to the mapping $\Phi(Y, \mathcal{Y}): \mathcal{D}_{X, \alpha}\left(\mathbb{R}^{m}\right) \rightarrow \mathcal{D}_{X, \alpha}\left(\mathbb{R}^{m}\right)$ defined by

$$
\Phi(Y, \mathcal{Y}):=\left(\xi+\int_{0} f\left(Y_{r}\right) d X_{r}, f(Y)\right)
$$

Approach of Nualart and Răşcanu, defining for any $\alpha, \lambda \geq 0$ and for any function Y on the simplex,

$$
\|Y\|_{\lambda, \alpha}:=\sup _{t \in[0, T]} e^{-\lambda t}\left(\Delta_{\alpha} Y\right)_{t}=\sup _{t \in[0, T]} e^{-\lambda t} \int_{0}^{t} \frac{\left|Y_{s t}\right|}{(t-s)^{\alpha}} d s
$$

If Y is a function on $[0, T]$, we set

$$
\|Y\|_{\lambda}=\sup _{t \in[0, T]} e^{-\lambda t}\left|Y_{t}\right| .
$$

We introduce the following seminorm in the space $\mathcal{D}_{X, \alpha}\left(\mathbb{R}^{m}\right)$:

$$
\|(Y, \mathcal{Y})\|_{\lambda, \alpha}=\|Y\|_{\lambda}+\|\mathcal{Y}\|_{\lambda}+\|Y\|_{\lambda, 2 \alpha}+\|\mathcal{Y}\|_{\lambda, 2 \alpha}+\left\|R^{Y}\right\|_{\lambda, \alpha+1} .
$$

Invariance: There exists λ_{0} such that the set

$$
\mathcal{B}_{\lambda_{0}}=\left\{(Y, \mathcal{Y}) \in \mathcal{D}_{X, \alpha}:\|\mathcal{Y}\|_{\infty} \leq\|f\|_{\infty},\|(Y, \mathcal{Y})\|_{\lambda_{0}, \alpha} \leq|\xi|+\|f\|_{\infty}+1\right\}
$$

is invariant under the mapping Φ. That is,

$$
\|(Y, \mathcal{Y})\|_{\lambda_{0}, \alpha} \leq|\xi|+\|f\|_{\infty}+1 \Rightarrow\|\Phi(Y, \mathcal{Y})\|_{\lambda_{0}, \alpha} \leq|\xi|+\|f\|_{\infty}+1
$$

Contraction: There exists $\lambda_{1} \geq \lambda_{0}$ such that for any $\left(Y^{1}, \mathcal{Y}^{1}\right)$ and $\left(Y^{2}, \mathcal{Y}^{2}\right)$ such that $\left\|\mathcal{Y}^{i}\right\|_{\infty} \leq\|f\|_{\infty},\left\|\left(Y^{i}, \mathcal{Y}^{i}\right)\right\|_{\lambda_{0}, \alpha} \leq|\xi|+\|f\|_{\infty}+1$, we have

$$
\left.\left\|\left(\Phi\left(Y^{1}, \mathcal{Y}^{1}\right)-\Phi\left(Y^{2}, \mathcal{Y}^{2}\right)\right)\right\|_{\lambda_{1}, \alpha} \leq \frac{1}{2} \|\left(Y^{1}, \mathcal{Y}^{1}\right)-\left(Y^{2}, \mathcal{Y}^{2}\right)\right) \|_{\lambda_{1}, \alpha} .
$$

If

$$
Y_{t}=\int_{0}^{t} f\left(Y_{r}\right) d X_{r}, \quad t \geq 0
$$

then we can prove the additivity of the integral

$$
\int_{0}^{t} f\left(Y_{r}\right) d X_{r}=\int_{0}^{s} f\left(Y_{r}\right) d X_{r},+\int_{s}^{t} f\left(Y_{r}\right) d X_{r}
$$

Still open in the general case!

References

1. Y. Chen, H. Gao, M.J. Garrido-Atienza, B. Schmalfuß, Pathwise solutions of SPDEs driven by Höldercontinuous integrators with exponent larger than $1 / 2$ and random dynamical systems. Discrete Contin. Dyn. Syst. 34(1) (2014), 79-98.
2. P. Friz and M. Hairer. A Course on Rough Paths, Springer Unitext. Springer Berlin, 2014.
3. M. J. Garrido-Atienza, K. Lu and B. Schmalfuß. Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H \in(1 / 3,1 / 2]$, Discrete and Continuous Dynamical Systems, Series B, 20 (2015), no. 8, 2553-2581.
4. M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parameter $H \in(1 / 3,1 / 2]$. SIAM Journal on Applied Dynamical Systems, 15(1): 625-654, 2016.
5. M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Lévy areas of Ornstein-Uhlenbeck processes in Hilbert spaces, chapter 10 of the book Continuous and distributed systems II, Theory and Applications, pp. 167-188 (2015), Studies in Systems, Decision and Control, Volumen 30, Springer.
6. M. J. Garrido-Atienza, D. Nualart and B. Schmalfuß, Fractional Calculus and Rough Paths, in preparation.
7. Y. Hu, D. Nualart. Rough path analysis via fractional calculus. Trans. Amer. Math. Soc., 361 (2009), no. 5, 2689-2718.
8. Y. Itô. Rough path theory via fractional calculus, Dissertation, 2015, https://doi.org/10.14989/doctor.k19121.
9. D. Nualart and A. Răşcanu. Differential equations driven by fractional Brownian motion. Collect. Math., 53(1):55-81, 2002.

THANK YOU

Local exponential stability of the trivial solution

Assume

$$
F(0)=0, \quad G(0)=0 .
$$

Denote by $\varphi\left(t, \omega, u_{0}\right)$ the first component of the solution.
Definition: The trivial solution of the above problem is said to be exponential stable with rate $\mu>0$ if there exists a random variable $\alpha(\omega)>0$ and a random neighborhood $\mathcal{U}_{0}(\omega)$ of zero such that for all $\omega \in \Omega$ and $t \in \mathbb{R}^{+}$

$$
\sup _{u_{0} \in \mathcal{U}_{0}(\omega)}\left\|\varphi\left(t, \omega, u_{0}\right)\right\| \leq \alpha(\omega) e^{-\mu t}
$$

The method consists on

1. Cut-off strategy: $\left(u^{n}, v^{n}\right)_{n \in \mathbb{N}}$ solution of modified system depending on random variables.
2. Discrete Gronwall-like lemma: subexponential estimates of $\left(u^{n}\right)_{n \in \mathbb{N}}$.
3. Temperedness of random variables.

A random variable $R \in(0, \infty)$ is called tempered from above if

$$
\limsup _{t \rightarrow \pm \infty} \frac{\log ^{+} R\left(\theta_{t} \omega\right)}{t}=0 \quad \text { for almost all } \quad \omega \in \Omega
$$

Example. $\|\omega\|_{\beta}$ is tempered from above.
R is called tempered from below if R^{-1} is tempered from above. Then for any $\epsilon>0$ there exists a (random) constant $C_{\epsilon}(\omega)>0$ such that

$$
R\left(\theta_{t} \omega\right) \geq C_{\epsilon}(\omega) e^{-\epsilon|t|} \quad \text { for almost all } \quad \omega \in \Omega
$$

We assume

$$
f(u):=F(u)-A u
$$

where A is a negative definite linear operator that generates the fundamental solution $e^{A t}$ to the linear equation $d u(t)=A u(t) d t$. Then $f \in C_{b}^{1}\left(\mathbb{R}^{d}\right)$ and $f(0)=0$.

Assume that $\operatorname{Re} \sigma(A)<-\lambda<0$. Then there exists $M \geq 1$ such that

$$
\left\|e^{A t}\right\| \leq M e^{-\lambda t}
$$

Consider

$$
d u(t)=(A u(t)+f(u(t))) d t+G(u(t)) d \omega(t), \quad u(0)=u_{0}
$$

Consider the mild version of this equation

$$
\begin{gathered}
u(t)=e^{A t} u_{0}+\int_{0}^{t} e^{A(t-r)} f(u(r)) d r \\
+(-1)^{\alpha} \int_{0}^{t} \hat{D}_{+}^{\alpha} e^{A(t-)} G(u(\cdot))[r] D_{t-}^{1-\alpha} \omega_{t-}[r] d r \\
-(-1)^{2 \alpha-1} \int_{0}^{t} D_{0+}^{2 \alpha-1} e^{A(t-)} D G(u(\cdot))[r] D_{t-}^{1-\alpha} \mathcal{D}_{t-}^{1-\alpha} v[r] d r \\
v(s, t)=\int_{s}^{t} \int_{s}^{r}(A u(q)+f(u(q))) d q \otimes d \omega(r) \\
+(-1)^{\alpha} \int_{s}^{t} \hat{D}_{s+}^{\alpha} G(u(\cdot))[r] D_{t-}^{1-\alpha}(\omega \otimes \omega)(\cdot, t)[r] d r \\
-(-1)^{2 \alpha-1} \int_{s}^{t} D_{s+}^{2 \alpha-1} D G(u(\cdot))[r] D_{t-}^{1-\alpha} \mathcal{D}_{t-}^{1-\alpha}(u \otimes(\omega \otimes \omega)(t))(\cdot, t)[r] d r
\end{gathered}
$$

Then the solution is equal to the solution of the original equation.

Cut-off of the modified path-area equation We apply a cut-off technique:

$$
\chi: \mathbb{R}^{d} \rightarrow \bar{B}_{\mathbb{R}^{d}}(0,1), \quad \chi(u)=\left\{\begin{array}{c}
u:\|u\| \leq \frac{1}{2} \\
0:\|u\| \geq 1
\end{array}\right.
$$

where $D \chi$ and $D^{2} \chi$ are bounded by $L_{D \chi}, L_{D^{2} \chi}$.

$$
\begin{gathered}
\chi_{\hat{R}(\omega)}(u)=\hat{R}(\omega) \chi\left(\frac{u}{\hat{R}(\omega)}\right) \in \bar{B}_{\mathbb{R}^{d}}(0, \hat{R}(\omega)), \\
f_{\hat{R}(\omega)}:=f \circ \chi_{\hat{R}(\omega)}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \quad G_{\hat{R}(\omega)}:=G \circ \chi_{\hat{R}(\omega)}: \mathbb{R}^{d} \rightarrow L\left(\mathbb{R}^{m}, \mathbb{R}^{d}\right)
\end{gathered}
$$

Lemma. Assume that $D f(0)=0, D G(0)=0$ and $D^{2} G(0)=0$. Then, for every $R>0$ there exists a positive \hat{R} such that for $u, z \in \mathbb{R}^{d}$

$$
\begin{aligned}
& \left\|f_{\hat{R}}(u)\right\| \leq L_{D \chi} R\|u\|, \\
& \left\|G_{\hat{R}}(u)\right\| \leq L_{D \chi} R\|u\|, \quad\left\|D G_{\hat{R}}(u)\right\| \leq L_{D \chi}^{2} R\|u\|, \\
& \left\|G_{\hat{R}}(u)-G_{\hat{R}}(z)\right\| \leq L_{D \chi} R\|u-z\|, \\
& \left\|D G_{\hat{R}}(u)-D G_{\hat{R}}(z)\right\| \leq\left(L_{D \chi}^{2}+L_{D^{2} \chi}\right) R\|u-z\|, \\
& \left\|G_{\hat{R}}(u)-G_{\hat{R}}(z)-D G\left(\chi_{\hat{R}}(z)\right)\left(\chi_{\hat{R}}(u)-\chi_{\hat{R}}(z)\right)\right\| \leq\left(L_{D \chi}^{2}+L_{D^{2} \chi}\right) R\|u-z\|^{2} .
\end{aligned}
$$

Lemma: For (small and tempered from below) $R(\omega)$ we find a (tempered from below) $\hat{R}(\omega)$ such that

$$
\begin{aligned}
& \left\|\int_{0} e^{A(-r)} f_{\hat{R}(\omega)}(u(r)) d r\right\|_{\beta, 0,1}+\left\|\int_{0} e^{A(--r)} G_{\hat{R}(\omega)}(u(r)) d \omega(r)\right\|_{\beta, 0,1} \\
& \quad \leq C_{1}(\omega) R(\omega)\|u\|_{\beta, 0,1}\left(1+\|u\|_{\beta, 0,1}+\|v\|_{2 \beta, \Delta_{0,1}}\right)
\end{aligned}
$$

where

$$
C_{1}(\omega):=c M^{2}(1+\|A\|)^{2} \max \left\{L_{D \chi}, L_{D \chi}^{2}+L_{D^{2} \chi}\right\}\left(1+\|\omega\|_{\beta, 0,1}\right),
$$

hence $C_{1}(\omega)$ is tempered from above.
Corollary: If $U=(u, v) \in W_{0,1}(\omega)$ is the path-area solution corresponding to the nonlinear functions $f_{\hat{R}(\omega)}$ and $G_{\hat{R}(\omega)}$, then

$$
\|u\|_{\beta, 0,1} \leq M(1+\|A\|)\left\|u_{0}\right\|+C_{1}(\omega) R(\omega)\|u\|_{\beta, 0,1}\left(1+\|u\|_{\beta, 0,1}+\|v\|_{2 \beta, \Delta_{0,1}}\right) .
$$

If $U=(u, v) \in W_{0,1}(\omega)$ is the path-area solution corresponding to the nonlinear functions $f_{\hat{R}(\omega)}$ and $G_{\hat{R}(\omega)}$, then

$$
\|v\|_{2 \beta, \Delta_{0,1}} \leq C_{2}(\omega)\left\|u_{0}\right\|+C_{3}(\omega) R(\omega)\|u\|_{\beta, 0,1}\left(1+\|u\|_{\beta, 0,1}+\|v\|_{2 \beta, \Delta_{0,1}}\right)
$$

with

$$
C_{2}(\omega) \sim\|\omega\|_{\beta, 0, T}, \quad C_{3}(\omega) \sim\|\omega\|_{\beta, 0, T},\|(\omega \otimes \omega)\|_{2 \beta, \Delta_{0, T}}
$$

$$
\|U\|_{W} \leq K_{1}(\omega)\left\|u_{0}\right\|+K_{2}(\omega) R(\omega)\left(1+\|U\|_{W}^{2}\right)
$$

where K_{1} and K_{2} are positive tempered from above random variables:

$$
K_{1}(\omega), K_{2}(\omega) \sim\|\omega\|_{\beta, 0,1},\|(\omega \otimes \omega)\|_{2 \beta, \Delta_{0,1}} .
$$

Assume that $R(\omega)$ and u_{0} are chosen such that

$$
4\left(K_{1}(\omega)\left\|u_{0}\right\|+K_{2}(\omega) R(\omega)\right) K_{2}(\omega) R(\omega)<1
$$

Then

$$
\|U\|_{W} \leq 2\left(K_{1}(\omega)\left\|u_{0}\right\|+K_{2}(\omega) R(\omega)\right)
$$

In fact, consider $y=a y^{2}+b$ with $a=K_{2}(\omega) R(\omega)$ and $b=K_{1}(\omega)\left\|u_{0}\right\|+K_{2}(\omega) R(\omega)$. We then have

$$
\|U\|_{W} \leq y_{1} \leq \frac{1-\sqrt{1-4 a b}}{2 a}=\frac{1-(1-4 a b)}{2 a(1+\sqrt{1-4 a b})} \leq 2 b .
$$

Moreover, $2 b \leq 1$ if $\left\|u_{0}\right\|$ is sufficiently small and $R(\omega)$ too. For $\epsilon \in(0,1)$ assume:

$$
3 K_{2}(\omega) R(\omega)=\epsilon
$$

hence $R(\omega)$ is tempered from below. Consider $\rho_{0}(\omega)$ such that $u_{0} \in B_{\mathbb{R}^{d}}\left(0, \rho_{0}(\omega)\right)$ such that

$$
K_{1}(\omega) \rho_{0}(\omega)+\frac{\epsilon}{3} \leq \frac{1}{2}
$$

Estimates of the solution

Consider $\left(U^{n}\right)_{n \in \mathbb{N} \cup\{0\}}=\left(\left(u^{n}, v^{n}\right)\right)_{n \in \mathbb{N} \cup\{0\}}$ a sequence of path-area solutions on $W_{0,1}\left(\theta_{n} \omega\right)$, where the path component is given for $t \in[0,1]$ by

$$
u^{n}(t)=e^{A t} u^{n}(0)+\int_{0}^{t} e^{A(t-r)} f_{\hat{R}\left(\theta_{n} \omega\right)}\left(u^{n}(r)\right) d r+\int_{0}^{t} e^{A(t-r)} G_{\hat{R}\left(\theta_{n} \omega\right)}\left(u^{n}(r)\right) d \theta_{n} \omega(r),
$$

such that $u^{n-1}(1)=u^{n}(0)$, being $u^{-1}(1)=u_{0}$.
Consider the u^{0} component of the solution U^{0} on $[0,1]$ for ω. We can assume that $\left\|U^{0}\right\|_{W} \leq 1$ for u_{0} such that $\left\|u_{0}\right\| \leq \rho_{0}(\omega)$:

$$
\begin{aligned}
\left\|u^{0}\right\|_{\beta, 0,1} & \leq M(1+\|A\|)\left\|u_{0}\right\|+C_{1}(\omega) R(\omega)\left\|u^{0}\right\|_{\beta, 0,1}\left(1+\left\|u^{0}\right\|_{\beta, 0,1}+\left\|v^{0}\right\|_{2 \beta, \Delta_{0,1}}\right) \\
& \leq M(1+\|A\|)\left\|u_{0}\right\|+3 C_{1}(\omega) R(\omega)\left\|u^{0}\right\|_{\beta, 0,1} \\
& \leq c_{A}\left\|u_{0}\right\|+\epsilon\left\|u^{0}\right\|_{\beta, 0,1}
\end{aligned}
$$

which implies

$$
\left\|u^{0}(1)\right\| \leq\left\|u^{0}\right\|_{\beta, 0,1} \leq \frac{c_{A}}{1-\epsilon}\left\|u_{0}\right\|:=c_{A, \epsilon}\left\|u_{0}\right\|
$$

Let $\rho_{1}(\omega)=\rho_{1}(\omega, \epsilon) \leq \rho_{0}(\omega)$ be the maximal radius such that for $u_{0} \in B_{\mathbb{R}^{d}}\left(0, \rho_{1}(\omega)\right)$ we have

$$
c_{A, \epsilon} K_{1}\left(\theta_{1} \omega\right) \rho_{1}(\omega)+\frac{\epsilon}{3} \leq \frac{1}{2}
$$

then

$$
\begin{aligned}
& 4\left(K_{1}\left(\theta_{1} \omega\right)\left\|u^{0}(1)\right\|+K_{2}\left(\theta_{1} \omega\right) R\left(\theta_{1} \omega\right)\right) K_{2}\left(\theta_{1} \omega\right) R\left(\theta_{1} \omega\right) \\
& \leq 4\left(c_{A, \epsilon} K_{1}\left(\theta_{1} \omega\right)\left\|u_{0}\right\|+\frac{\epsilon}{3}\right) \frac{\epsilon}{3}<1
\end{aligned}
$$

Since

$$
\begin{aligned}
& u^{1}(t)=e^{A t}\left(e^{A} u_{0}+\int_{0}^{1} e^{A(1-r)} f_{\hat{R}(\omega)}\left(u^{0}(r)\right) d r+\int_{0}^{1} e^{A(1-r)} G_{\hat{R}(\omega)}\left(u^{0}(r)\right) d \omega\right) \\
& +\int_{0}^{t} e^{A(t-r)} f_{\hat{R}\left(\theta_{1} \omega\right)}\left(u^{1}(r)\right) d r+\int_{0}^{t} e^{A(t-r)} G_{\hat{R}\left(\theta_{1} \omega\right)}\left(u^{1}(r)\right) d \theta_{1} \omega,
\end{aligned}
$$

then

$$
\begin{aligned}
\left\|u^{1}\right\|_{\beta, 0,1} & \leq M(1+\|A\|)\left(M e^{-\lambda}\left\|u_{0}\right\|+\epsilon\left\|u^{0}\right\|_{\beta, 0,1}\right)+\epsilon\left\|u^{1}\right\|_{\beta, 0,1} \\
& \leq c_{A}\left(e^{-\lambda}+\epsilon c_{A, \epsilon}\right)\left\|u_{0}\right\|+\epsilon\left\|u^{1}\right\|_{\beta, 0,1} .
\end{aligned}
$$

Therefore

$$
\left\|u^{1}(1)\right\| \leq\left\|u^{1}\right\|_{\beta, 0,1} \leq c_{A, \epsilon}\left(e^{-\lambda}+\epsilon c_{A, \epsilon}\right)\left\|u_{0}\right\|=c_{A, \epsilon} e^{\log \left(e^{-\lambda}+\epsilon c_{A, \epsilon}\right.}\left\|u_{0}\right\|
$$

Let $\rho_{2}(\omega) \leq \rho_{1}(\omega)$ be the maximal radius such that for $u_{0} \in B_{\mathbb{R}^{d}}\left(0, \rho_{2}(\omega)\right)$

$$
c_{A, \epsilon} e^{\log \left(e^{-\lambda}+\epsilon c_{A, \epsilon}\right)} K_{1}\left(\theta_{2} \omega\right) \rho_{2}(\omega)+\frac{\epsilon}{3} \leq \frac{1}{2},
$$

then $\left\|U^{2}\right\|_{W} \leq 1$. Since for $t \in[0,1]$

$$
\begin{aligned}
u^{2}(t)= & e^{A t}\left(e^{2 A} u_{0}+e^{A} \int_{0}^{1} e^{A(1-r)} f_{\hat{R}(\omega)}\left(u^{0}(r)\right) d r+e^{A} \int_{0}^{1} e^{A(1-r)} G_{\hat{R}(\omega)}\left(u^{0}(r)\right) d \omega\right. \\
& \left.+\int_{0}^{1} e^{A(1-r)} f_{\hat{R}\left(\theta_{1} \omega\right)}\left(u^{1}(r)\right) d r+\int_{0}^{1} e^{A(1-r)} G_{\hat{R}\left(\theta_{1} \omega\right)}\left(u^{1}(r)\right) d \theta_{1} \omega\right) \\
& +\int_{0}^{t} e^{A(t-r)} f_{\hat{R}\left(\theta_{2} \omega\right)}\left(u^{2}(r)\right) d r+\int_{0}^{t} e^{A(t-r)} G_{\hat{R}\left(\theta_{2} \omega\right)}\left(u^{2}(r)\right) d \theta_{2} \omega
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\left\|u^{2}\right\|_{\beta, 0,1} & \leq M(1+\|A\|)\left(M e^{-2 \lambda}\left\|u_{0}\right\|+M e^{-\lambda} \epsilon\left\|u^{0}\right\|_{\beta, 0,1}+\epsilon\left\|u^{1}\right\|_{\beta, 0,1}\right)+\epsilon\left\|u^{2}\right\|_{\beta, 0,1} \\
& \leq c_{A} e^{-2 \lambda}\left(\left\|u_{0}\right\|+\epsilon e^{\lambda}\left\|u^{0}\right\|_{\beta, 0,1}+\epsilon e^{2 \lambda}\left\|u^{1}\right\|_{\beta, 0,1}\right)+\epsilon\left\|u^{2}\right\|_{\beta, 0,1}
\end{aligned}
$$

hence applying a discrete version of Gronwall's lemma,

$$
\left\|u^{2}(1)\right\| \leq\left\|u^{2}\right\|_{\beta, 0,1} \leq c_{A, \epsilon} e^{2 \log \left(e^{-\lambda}+\epsilon c_{A, \epsilon}\right)}\left\|u_{0}\right\| .
$$

Iteration and Gronwall lemma...for $\rho_{n}(\omega) \leq \rho_{n-1}(\omega)$

$$
\left\|u^{n}(1)\right\| \leq\left\|u^{n}\right\|_{\beta, 0,1} \leq e^{-n \lambda} c_{A, \epsilon}\left\|u_{0}\right\|\left(1+\epsilon c_{A, \epsilon} e^{\lambda}\right)^{n} \leq c_{A, \epsilon}\left\|u_{0}\right\| e^{n \log \left(e^{-\lambda}+\epsilon c_{A, \epsilon}\right)} .
$$

We have constructed a finite number of elements of a sequence of radii

$$
\rho_{n}(\omega) \leq \rho_{n-1}(\omega) \leq \cdots \leq \rho_{0}(\omega)
$$

Temperedness of K_{1} : there is a natural number $N(\omega, \epsilon)$ such that for $n \geq N(\omega, \epsilon)$

$$
c_{A, \epsilon} e^{(n-1) \log \left(e^{-\lambda}+\epsilon c_{A, \epsilon}\right)} K_{1}\left(\theta_{n} \omega\right) \rho_{N(\omega, \epsilon)}(\omega)+\frac{\epsilon}{3} \leq \frac{1}{2} .
$$

For $n \geq N(\omega, \epsilon)$ we define $\rho_{n}(\omega)=\rho_{n}(\omega, \epsilon):=\rho_{N(\omega, \epsilon)}(\omega)$, such that for all $n \in \mathbb{N}$

$$
\left.c_{A, \epsilon} e^{(n-1) \log \left(e^{-\lambda}+\epsilon c_{A}, \epsilon\right.}\right) K_{1}\left(\theta_{n} \omega\right) \rho_{n}(\omega)+\frac{\epsilon}{3} \leq \frac{1}{2} .
$$

$$
\left\|u^{n}\right\|_{\beta, 0,1} \leq c_{A, \epsilon} e^{n \log \left(e^{-\lambda}+\epsilon c_{A, \epsilon}\right)}\left\|u_{0}\right\|
$$

Relation to the original equation (without cut-off): There is a $\hat{\rho}(\omega) \leq \rho_{N}(\omega)$ such that for $u_{0} \in \mathcal{U}_{0}:=B_{\mathbb{R}^{d}}(0, \hat{\rho}(\omega))$ we have \hat{R} is tempered from below, then

$$
\left\|u^{n}\right\|_{\beta, 0,1} \leq \frac{\hat{R}\left(\theta_{n} \omega\right)}{2}, \quad \text { for } n \in \mathbb{Z}^{+}
$$

Hence, as a consequence of the definition of $\chi_{\hat{R}}$,

$$
f_{\hat{R}\left(\theta_{n} \omega\right)}\left(u^{n}(r)\right)=f\left(u^{n}(r)\right), \quad G_{\hat{R}\left(\theta_{n} \omega\right)}\left(u^{n}(r)\right)=G\left(u^{n}(r)\right) .
$$

Construction of the path area solution:

$$
(u(t), v(s, t)):=\left(u^{n}(t-n), v^{n}(s-n, t-n)\right),(t,(s, t)) \in[n, n+1] \times \Delta_{n, n+1} .
$$

(u, v) solves the path area solution.
Main tool: path-area concatenation

$$
\begin{aligned}
& u(t, \omega)= \begin{cases}u^{0}(t, \omega) & : t \in[0,1] \\
u^{1}(t-1, \omega) & : t \in[1,2] .\end{cases} \\
& v(s, t, \omega)= \begin{cases}v^{0}(s, t, \omega) & : \\
v^{1}\left(s-1, t-1, \theta_{1} \omega\right) & s \leq t \in \Delta_{0,1} \\
v^{0}(s, 1, \omega)+v^{1}\left(0, t-1, \theta_{1} \omega\right) \\
\quad+\left(u^{0}(1, \omega)-u^{0}(s, \omega)\right) \otimes(\omega(t)-\omega(1)) & :(s, t) \in[0,1] \times[1,2]\end{cases}
\end{aligned}
$$

Theorem. There exists a neighborhood $\mathcal{U}_{0}(\omega)$ of zero such that if u_{0} is contained in $\mathcal{U}_{0}(\omega)$ the path part of the path-area solution is exponentially stable with an exponential rate less than $\mu<\lambda$.
Proof: Take $0<\mu<\lambda$. For $\epsilon \in I:=\left(0, \frac{1-e^{-\lambda}}{c_{A}+1-e^{-\lambda}}\right)$ we define $\mu(\epsilon):=-\log \left(e^{-\lambda}+\epsilon c_{A, \epsilon}\right)$. There exists $\epsilon \in I$ such that $\mu(\epsilon) \geq \mu$.
Consider $u_{0} \in \mathcal{U}_{0}:=B_{\mathbb{R}^{d}}(0, \hat{\rho}(\omega))$. Given $t \in[n, n+1], n \in \mathbb{N}$, we obtain

$$
n \log \left(e^{-\lambda}+\epsilon c_{A, \epsilon}\right)=-n \mu(\epsilon) \leq(1-t) \mu(\epsilon)
$$

then

$$
\|u(t)\| \leq\left\|u^{n}\right\|_{\beta, 0,1} \leq c_{A, \epsilon}\left\|u_{0}\right\| e^{\mu(\epsilon)} e^{-\mu(\epsilon) t} \leq c_{A, \epsilon} \hat{\rho}(\omega) e^{\mu(\epsilon)} e^{-\mu t},
$$

which leads to the desired local exponential stability

$$
\sup _{u_{0} \in \mathcal{U}_{0}(\omega)}\left\|\varphi\left(t, \omega, u_{0}\right)\right\| \leq \alpha(\omega) e^{-\mu t}
$$

taking

$$
\alpha(\omega)=c_{A, \epsilon} \hat{\rho}(\omega) e^{\mu(\epsilon)}
$$

[^0]: "Workshop on Long-Time Behaviour and Statistical Inference for Stochastic Processes: from Markovian to Long-Memory Dynamics"
 Paris, November 20th 2019

